论文标题

手性多胎费中的双阳性球和量化带状几何形状

Dual Haldane sphere and quantized band geometry in chiral multifold fermions

论文作者

Lin, Yu-Ping, Hsiao, Wei-Han

论文摘要

我们表明,手性的多胎费在动量空间中呈现了双haldane球体问题。由于在退化点处的浆果单子,在量子公制的痕迹中出现了双兰道水平,通过表面积分来定义量化的几何不变。我们进一步证明了可测量的物理可观察物中的潜在表现。对于降水函数的有限扩散的下限衍生得出,对于平面带的超导性,相应地鉴定了异常相位相干性。我们简要评论这些结果在扰动下的稳定性。还讨论了量子度量的潜在实验探针。

We show that the chiral multifold fermions present a dual Haldane sphere problem in momentum space. Owing to the Berry monopole at the degenerate point, a dual Landau level emerges in the trace of quantum metric, with which a quantized geometric invariant is defined through a surface integration. We further demonstrate potential manifestations in the measurable, physical observables. With a lower bound derived for the finite spread of Wannier functions, anomalous phase coherence is identified accordingly for the flat band superconductivity. We briefly comment on the stability of these results under perturbations. Potential experimental probes of the quantum metric are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源