论文标题

FEDMAX:缓解激活差异,以获得准确和沟通效率的联合学习

FedMAX: Mitigating Activation Divergence for Accurate and Communication-Efficient Federated Learning

论文作者

Chen, Wei, Bhardwaj, Kartikeya, Marculescu, Radu

论文摘要

在本文中,我们确定了一种称为激活差异的新现象,该现象在多个用户的数据异质性(即数据是非IID)引起的联合学习(FL)中发生。具体来说,我们认为,即使用户的子集与驻扎在不同设备上的数据共享几个常见类,fl中的激活向量也会有所不同。为了解决激活差问题,我们根据最大熵的原理介绍了先验。此先验假定有关人均激活向量的最小信息,并旨在使同一类的激活向量在多个设备之间尽可能相似。我们的结果表明,对于IID和非IID设置,我们提出的方法都可以提高准确性(由于多个设备之间的激活向量明显相似,并且比FL中的最先进方法更加沟通效率。最后,我们说明了方法对一些常见的基准和两个大型医疗数据集的有效性。

In this paper, we identify a new phenomenon called activation-divergence which occurs in Federated Learning (FL) due to data heterogeneity (i.e., data being non-IID) across multiple users. Specifically, we argue that the activation vectors in FL can diverge, even if subsets of users share a few common classes with data residing on different devices. To address the activation-divergence issue, we introduce a prior based on the principle of maximum entropy; this prior assumes minimal information about the per-device activation vectors and aims at making the activation vectors of same classes as similar as possible across multiple devices. Our results show that, for both IID and non-IID settings, our proposed approach results in better accuracy (due to the significantly more similar activation vectors across multiple devices), and is more communication-efficient than state-of-the-art approaches in FL. Finally, we illustrate the effectiveness of our approach on a few common benchmarks and two large medical datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源