论文标题
弹性控制:妥协适应
Resilient Control: Compromising to Adapt
论文作者
论文摘要
在最佳控制问题中,干扰通常用于使用强大的解决方案,例如H-含量或试管模型预测性控制,这些解决方案对于最严重的案例干扰可行的计划控制动作。但是,为每种意外事件的计划都会导致过度保守,性能较差的解决方案,甚至在极端情况下,无法实现不可行。弹性通过适应潜在的控制问题(例如,放松其规格)来解决这些缺点,以获得可行的,可能仍然有价值的轨迹。尽管有不同的方面,但在动态系统和控制的背景下,鲁棒性和韧性通常会混合在一起。本文的目的是在最佳控制的背景下正式化弹性的概念,即以上述方式,即根据适应性。为此,我们通过允许对诱导所需的弹性行为的要求进行依赖的需求修改来引入最佳控制的弹性公式。然后,我们提出了一个框架来自动设计这些行为,通过违反控制绩效和要求违规。我们分析了这种弹性弹性的方法,以获得逆最佳结果,并量化干扰对诱导需求松弛的影响。通过证明鲁棒性和弹性优化不同的目标,我们表明这些实际上是不同的系统属性。我们通过说明在不同控制问题中的弹性影响来结束。
In optimal control problems, disturbances are typically dealt with using robust solutions, such as H-infinity or tube model predictive control, that plan control actions feasible for the worst-case disturbance. Yet, planning for every contingency can lead to over-conservative, poorly performing solutions or even, in extreme cases, to infeasibility. Resilience addresses these shortcomings by adapting the underlying control problem, e.g., by relaxing its specifications, to obtain a feasible, possibly still valuable trajectory. Despite their different aspects, robustness and resilience are often conflated in the context of dynamical systems and control. The goal of this paper is to formalize, in the context of optimal control, the concept of resilience understood as above, i.e., in terms of adaptation. To do so, we introduce a resilient formulation of optimal control by allowing disruption-dependent modifications of the requirements that induce the desired resilient behavior. We then propose a framework to design these behaviors automatically by trading off control performance and requirement violations. We analyze this resilience-by-compromise method to obtain inverse optimality results and quantify the effect of disturbances on the induced requirement relaxations. By proving that robustness and resilience optimize different objectives, we show that these are in fact distinct system properties. We conclude by illustrating the effect of resilience in different control problems.