论文标题

来自部分微分方程的非变化对称性的对称递归运算符的公式

A formula for symmetry recursion operators from non-variational symmetries of partial differential equations

论文作者

Anco, Stephen C., Wang, Bao

论文摘要

从连接变异整合因子和非变化的对称性的新结果中获得了一个明确的公式,以找到偏微分方程(PDE)的对称递归操作员(PDE)。该公式是一种普通公式的特殊情况,该公式可从非毕业对象对称性产生隔离的算子。这些公式通过线性PDE和可集成的非线性PDE的几个示例来说明。此外,还提供了通过第一个公式的乘二阶PDE的分类,该分类二阶PDE承认乘法对称递归操作员。

An explicit formula to find symmetry recursion operators for partial differential equations (PDEs) is obtained from new results connecting variational integrating factors and non-variational symmetries. The formula is special case of a general formula that produces a pre-symplectic operator from a non-gradient adjoint-symmetry. These formulas are illustrated by several examples of linear PDEs and integrable nonlinear PDEs. Additionally, a classification of quasilinear second-order PDEs admitting a multiplicative symmetry recursion operator through the first formula is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源