论文标题

基于机器学习回归的PP碰撞中的多方互动

Multi-Parton Interactions in pp collisions from Machine Learning-based regression

论文作者

Ortiz, Antonio, Paz, Antonio, Romo, Jose D., Tripathy, Sushanta, Zepeda, Erik A., Bautista, Irais

论文摘要

PP碰撞中的多方相互作用(MPI)引起了重离子社区的关注,因为它们可以帮助阐明在LHC的小型碰撞系统中发现的类似集体效应的起源。在这项工作中,我们报告说,在Pythia 8.244中,在具有大量MPI($ {\ rm n} _ {\ rm MPI} $)的事件中,带电的粒子生产在最低偏置pp碰撞中获得的事件显示出了归一化的。在对应的$ \ langle {\ rm n} _ {\ rm mpi} \ rangle $归一化之后对于更高的$ p _ {\ rm t} $($> 8 $ gev/$ c $),该比率独立于$ {\ rm n} _ {\ rm mpi} $。虽然凸起的大小随着$ {\ rm n} _ {\ rm mpi} $的增加而增加,但在“二进制缩放”(parton-parton互动)中,预计在高$ p _ {\ rm t} $处的行为预计,鉴于在Parton-Parton-eNerergy Lossergy inter-eNerergy insergy in pythia中,该行为是在Pylon-Parton互动中。中级$ p _ {\ rm t} $的凸起让人联想到p-pb碰撞中核修饰因子观察到的cronin效应。为了在数据中揭示这些效果,我们提出了一种策略,以使用基于机器学习的回归来构建对MPI敏感的事件分类器。该研究是使用TMVA进行的,并且通过增强决策树(BDT)进行回归。事件属性诸如前向充电多样性,横向球和平均横向动量($ \ langle p _ {\ rm t} \ rangle $)的事件属性用于训练。运动学切割是根据爱丽丝探测器能力定义的。此外,我们还报告说,如果我们将受过训练的BDT应用于现有($ {\ rm inel}> 0 $)PP数据,即在$ |η| <1 $内至少有一个主要带电的粒子的事件,则PP碰撞中的平均MPI数量为$ \ sqrt {s} = 5.02 $和3.76 $ 3.76 $ 3.76 $ 3.76 $ 3.76 $ 3.76 $ c。 4.65 $ \ PM1.01 $。

Multi-Parton Interactions (MPI) in pp collisions have attracted the attention of the heavy-ion community since they can help to elucidate the origin of collective-like effects discovered in small collision systems at the LHC. In this work, we report that in PYTHIA 8.244, the charged-particle production in events with a large number of MPI (${\rm N}_{\rm mpi}$) normalized to that obtained in minimum-bias pp collisions shows interesting features. After the normalization to the corresponding $\langle {\rm N}_{\rm mpi} \rangle$, the ratios as a function of $p_{\rm T}$ exhibit a bump at $p_{\rm T}\approx3$ GeV/$c$; and for higher $p_{\rm T}$ ($>8$ GeV/$c$), the ratios are independent of ${\rm N}_{\rm mpi}$. While the size of the bump increases with increasing ${\rm N}_{\rm mpi}$, the behavior at high $p_{\rm T}$ is expected from the "binary scaling" (parton-parton interactions), which holds given the absence of any parton-energy loss mechanism in PYTHIA. The bump at intermediate $p_{\rm T}$ is reminiscent of the Cronin effect observed for the nuclear modification factor in p--Pb collisions. In order to unveil these effects in data, we propose a strategy to construct an event classifier sensitive to MPI using Machine Learning-based regression. The study is conducted using TMVA, and the regression is performed with Boosted Decision Trees (BDT). Event properties like forward charged-particle multiplicity, transverse spherocity and the average transverse momentum ($\langle p_{\rm T} \rangle$) are used for training. The kinematic cuts are defined in accordance with the ALICE detector capabilities. In addition, we also report that if we apply the trained BDT on existing (${\rm INEL}>0$) pp data, i.e. events with at least one primary charged-particle within $|η|<1$, the average number of MPI in pp collisions at $\sqrt{s}=5.02$ and 13 TeV are 3.76$\pm1.01$ and 4.65$\pm1.01$, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源