论文标题
在支持无人机的车辆互联网中进行联合学习:一种多维合同匹配方法
Towards Federated Learning in UAV-Enabled Internet of Vehicles: A Multi-Dimensional Contract-Matching Approach
论文作者
论文摘要
再加上深度学习的兴起,汽车互联网(IOV)组件的大量数据和增强的计算能力,可以建立有效的人工智能(AI)模型。除了地面数据源外,基于无人驾驶飞机(无人机)的数据收集服务提供商和AI模型培训(即无人机)服务提供者近年来越来越受欢迎。但是,管理数据隐私的严格法规可能阻碍了独立拥有的无人机之间的数据共享。为此,我们建议采用基于联邦学习(FL)的方法,以在独立DAAS提供商的联合会中为IOV应用程序的开发,例如交通预测和停车场的占用管理,以实现隐私保护的协作机器学习。鉴于无人机和模型所有者之间的信息不对称和激励匹配,我们利用了多维合同的自我浏览特性来确保对无人机类型的真实报告,同时考虑了多种差异来源,例如在感应,计算,计算和传输成本中。然后,我们采用大风 - 夏普利算法将最低的无人机与每个子区域相匹配。模拟结果验证了合同设计的激励兼容性,并显示了我们匹配的效率,从而确保了信息不对称的模型所有者的利润最大化。
Coupled with the rise of Deep Learning, the wealth of data and enhanced computation capabilities of Internet of Vehicles (IoV) components enable effective Artificial Intelligence (AI) based models to be built. Beyond ground data sources, Unmanned Aerial Vehicles (UAVs) based service providers for data collection and AI model training, i.e., Drones-as-a-Service, is increasingly popular in recent years. However, the stringent regulations governing data privacy potentially impedes data sharing across independently owned UAVs. To this end, we propose the adoption of a Federated Learning (FL) based approach to enable privacy-preserving collaborative Machine Learning across a federation of independent DaaS providers for the development of IoV applications, e.g., for traffic prediction and car park occupancy management. Given the information asymmetry and incentive mismatches between the UAVs and model owners, we leverage on the self-revealing properties of a multi-dimensional contract to ensure truthful reporting of the UAV types, while accounting for the multiple sources of heterogeneity, e.g., in sensing, computation, and transmission costs. Then, we adopt the Gale-Shapley algorithm to match the lowest cost UAV to each subregion. The simulation results validate the incentive compatibility of our contract design, and shows the efficiency of our matching, thus guaranteeing profit maximization for the model owner amid information asymmetry.