论文标题

单图超分辨率的深度自适应推理网络

Deep Adaptive Inference Networks for Single Image Super-Resolution

论文作者

Liu, Ming, Zhang, Zhilu, Hou, Liya, Zuo, Wangmeng, Zhang, Lei

论文摘要

近年来,由于深度卷积神经网络(CNN)的部署,单图超分辨率(SISR)取得了巨大进展。对于大多数现有方法,每个SISR模型的计算成本与本地图像内容,硬件平台和应用程序方案无关。尽管如此,内容和资源自适应模型是更喜欢的,并且鼓励将更简单有效的网络应用于更容易的区域,并具有较少的详细信息以及具有限制效率约束的场景。在本文中,我们通过利用自适应推理网络(ADADSR)迈出了一步来解决这个问题。特别是,我们的ADADSR涉及一个SISR模型作为骨干和轻型适配器模块,该模块将图像功能和资源约束作为输入,并预测了本地网络深度的映射。然后可以在有效的稀疏卷积的支持下进行自适应推理,在该稀疏卷积的支持下,只有骨干中的一小部分根据其预测的深度在给定位置执行。网络学习可以作为重建和网络深度损失的联合优化。在推论阶段,可以灵活地调整平均深度以满足一系列效率限制。实验证明了我们的ADADSR的有效性和适应性与其对应物(例如EDSR和RCAN)相比。

Recent years have witnessed tremendous progress in single image super-resolution (SISR) owing to the deployment of deep convolutional neural networks (CNNs). For most existing methods, the computational cost of each SISR model is irrelevant to local image content, hardware platform and application scenario. Nonetheless, content and resource adaptive model is more preferred, and it is encouraging to apply simpler and efficient networks to the easier regions with less details and the scenarios with restricted efficiency constraints. In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR). In particular, our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth. Adaptive inference can then be performed with the support of efficient sparse convolution, where only a fraction of the layers in the backbone is performed at a given position according to its predicted depth. The network learning can be formulated as the joint optimization of reconstruction and network depth losses. In the inference stage, the average depth can be flexibly tuned to meet a range of efficiency constraints. Experiments demonstrate the effectiveness and adaptability of our AdaDSR in contrast to its counterparts (e.g., EDSR and RCAN).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源