论文标题
具有强大类型潜力的热运算符的强大独特延续属性
A strong unique continuation property for the heat operator with Hardy type potential
论文作者
论文摘要
在本说明中,我们证明了抛物线差不平等解决方案的原点上强大的独特延续属性\ [|ΔU -u_t | \ leq \ frac {m} {| x |^2} | u |,\]具有关键的逆平方电位。我们的主要结果使与亚临界病例有关的船只升高。
In this note we prove the strong unique continuation property at the origin for the solutions of the parabolic differential inequality \[ |Δu - u_t| \leq \frac{M}{|x|^2} |u|, \] with the critical inverse square potential. Our main result sharpens a previous one of Vessella concerned with the subcritical case.