论文标题

CKS IX:用精确的恒星参数重新审视最小质量的质量星云

CKS IX: Revisiting the Minimum-Mass Extrasolar Nebula with Precise Stellar Parameters

论文作者

Dai, Fei, Winn, Joshua N., Schlaufman, Kevin, Wang, Songhu, Weiss, Lauren, Petigura, Erik A., Howard, Andrew W., Fang, Min

论文摘要

我们研究了最小质量质量星云(MMEN)的固体表面密度$σ$与宿主星质量$ m_ \ star $和金属性[Fe/H]之间的可能相关性。利用加利福尼亚的精确主机恒星属性 - {\ it kepler} -survey(cks),我们发现$σ= $ 50^{+33} _ { - 20} \ rm {〜g〜cm} $(m_ \ star/m_ \ odot)^{1.04 \ pm0.22} $ $ 10^{0.22 \ pm0.05 {\ rm [fe/h]}} $ for {\ it kepler} -Like Systems(1-4 $ R_ \ oplus $; $ a <$ 1AU)。强$ m_ \ star $依赖性让人联想到以前的灰尘连续体结果,即用$ m_ \ star $固体磁盘质量尺度。较弱的[Fe/H]依赖性表明,与巨型行星不同的行星在低金属环境中很容易形成。尽管行星发生率急剧下降,但最内向的区域($ a <$ 0.1AU)仍保持平稳的特征:通过将磁层共旋转磁层范围内的旋转周期,而不是尘埃的溢光,这种结果有利于磁盘截断。 {\ it kepler}的$σ$与$ m_ \ star $和[fe/h]相比,多运输系统的相关性要大得多。这表明产生单个系统的动态热进化也部分消除了磁盘中形成的记忆。 radial速行星产生的MMEN与CKS行星非常相似。 Transit-Timing-timing变化行星假定的收敛迁移历史受其约束不良的MMEN的支持。我们发现,低质量恒星的形成/固定行星具有更高的效率:对于$ \ sim $ 1AU内约20 \%的固体质量的阳光,将其转换/保留为子纳普,而后期k- earlly-m的恒星为70 \%。这可能是由于较低的二元分数,较低的巨型行星发生或下质量恒星的持续时间较长。

We investigate a possible correlation between the solid surface density $Σ$ of the minimum-mass extrasolar nebulae (MMEN) and the host star mass $M_\star$ and metallicity [Fe/H]. Leveraging on the precise host star properties from the California-{\it Kepler}-Survey (CKS), we found that $Σ=$ 50^{+33}_{-20} \rm{~g~cm}^{-2} $(a/1AU)^{-1.75\pm0.07}$ $(M_\star/M_\odot)^{1.04\pm0.22}$ $10^{0.22\pm0.05{\rm [Fe/H]}}$ for {\it Kepler}-like systems (1-4$R_\oplus$; $a<$1AU). The strong $M_\star$ dependence is reminiscent of previous dust continuum results that the solid disk mass scales with $M_\star$. The weaker [Fe/H] dependence shows that sub-Neptune planets, unlike giant planets, form readily in lower-metallicity environment. The innermost region ($a<$ 0.1AU) of a MMEN maintains a smooth profile despite a steep decline of planet occurrence rate: a result that favors the truncation of disks by co-rotating magnetospheres with a range of rotation periods, rather than the sublimation of dusts. The $Σ$ of {\it Kepler} multi-transiting systems shows a much stronger correlation with $M_\star$ and [Fe/H] than singles. This suggests that the dynamically hot evolution that produced single systems also partially removed the memory of formation in disks. Radial-velocity planets yielded a MMEN very similar to CKS planets; transit-timing-variation planets' postulated convergent migration history is supported by their poorly constrained MMEN. We found that lower-mass stars have a higher efficiency of forming/retaining planets: for sun-like stars about 20\% of the solid mass within $\sim$1AU are converted/preserved as sub-Neptunes, compared to 70\% for late-K-early-M stars. This may be due to the lower binary fraction, lower giant-planet occurrence or the longer disk lifetime of lower-mass stars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源