论文标题
实用的中央二项式系数
Practical central binomial coefficients
论文作者
论文摘要
一个实用的数字是一个正整数$ n $,因此所有低于$ n $的正整数都可以写成$ n $的独特除数的总和。 Leonetti和Sanna证明,作为$ x \ to +\ infty $,中央二项式系数$ \ binom {2n} {n} {n} $是所有正整数$ n \ leq x $的实用数字,但最多最多$ o(x^{0.88097})$ excelp。我们通过将异常数减少到$ \ exp \!\ big(c(\ log x)^{4/5} \ log \ log \ x \ big)$来改善此结果,其中$ c> 0 $是常数。
A practical number is a positive integer $n$ such that all positive integers less than $n$ can be written as a sum of distinct divisors of $n$. Leonetti and Sanna proved that, as $x \to +\infty$, the central binomial coefficient $\binom{2n}{n}$ is a practical number for all positive integers $n \leq x$ but at most $O(x^{0.88097})$ exceptions. We improve this result by reducing the number of exceptions to $\exp\!\big(C (\log x)^{4/5} \log \log x\big)$, where $C > 0$ is a constant.