论文标题

持续的利润最大化:对无约束的DR-Subodular最大化的研究

Continuous Profit Maximization: A Study of Unconstrained Dr-submodular Maximization

论文作者

Guo, Jianxiong, Wu, Weili

论文摘要

利润最大化(PM)是在在线社交网络中选择一部分用户作为病毒营销的种子,在线社交网络中,在影响力传播中的成本和利润之间取得了平衡。我们将PM扩展到一般营销策略,并形成连续的利润最大化(CPM-MS)问题,该问题的域名是整数晶格。我们的CPM-MS的目标函数是DR-Submodular,但非单调的。这是不受限制的DR-smodular最大化(UDSM)问题的典型情况,并将其作为起点,我们在本文中系统地研究UDSM,这与现有研究人员截然不同。首先,我们介绍了基于晶格的双贪婪算法,该算法可以获得恒定的近似保证。但是,存在一个严格且不切实际的条件,要求客观值在整个领域上是不负的,否则没有理论上的界限。因此,我们提出了一种称为基于晶格的迭代修剪的技术。它可以有效地缩小搜索空间,从而大大增加满足该较小域上非负目标函数而不会丢失近似比的可能性。然后,为了克服难以估计CPM-MS的客观价值的困难,我们采用了反向采样策略,并将其与基于格子的双重贪婪(包括修剪)结合使用,而不会失去其性能,但会减少其运行时间。可以将整个过程视为解决UDSM问题的一般框架,尤其是用于应用社交网络。最后,我们在几个实际数据集上进行实验,以评估我们提出的算法的有效性和效率。

Profit maximization (PM) is to select a subset of users as seeds for viral marketing in online social networks, which balances between the cost and the profit from influence spread. We extend PM to that under the general marketing strategy, and form continuous profit maximization (CPM-MS) problem, whose domain is on integer lattices. The objective function of our CPM-MS is dr-submodular, but non-monotone. It is a typical case of unconstrained dr-submodular maximization (UDSM) problem, and take it as a starting point, we study UDSM systematically in this paper, which is very different from those existing researcher. First, we introduce the lattice-based double greedy algorithm, which can obtain a constant approximation guarantee. However, there is a strict and unrealistic condition that requiring the objective value is non-negative on the whole domain, or else no theoretical bounds. Thus, we propose a technique, called lattice-based iterative pruning. It can shrink the search space effectively, thereby greatly increasing the possibility of satisfying the non-negative objective function on this smaller domain without losing approximation ratio. Then, to overcome the difficulty to estimate the objective value of CPM-MS, we adopt reverse sampling strategies, and combine it with lattice-based double greedy, including pruning, without losing its performance but reducing its running time. The entire process can be considered as a general framework to solve the UDSM problem, especially for applying to social networks. Finally, we conduct experiments on several real datasets to evaluate the effectiveness and efficiency of our proposed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源