论文标题
可通过适当的弹性塑形图可忽略的全态束
Holomorphic bundles trivializable by proper surjective holomorphic map
论文作者
论文摘要
给定一个紧凑的复杂歧管$ m $,我们调查了$ m $上的全态矢量捆绑$ e $ e $,因此$φ^* e $对于某些紧凑的复杂歧管中的某些过滤的全体形态图$φ$至$ m $是微不足道的。我们证明,这些正好是那些与有限的单构型同构的平坦圆锥形连接的塑形载体束。事实证明,对于Holomorthic Principal $ g $捆队也证明了类似的结果,其中$ g $是连接的还原复合物仿射代数集团。
Given a compact complex manifold $M$, we investigate the holomorphic vector bundles $E$ on $M$ such that $φ^* E$ is trivial for some surjective holomorphic map $φ$, to $M$, from some compact complex manifold. We prove that these are exactly those holomorphic vector bundles that admit a flat holomorphic connection with finite monodromy homomorphism. A similar result is proved for holomorphic principal $G$-bundles, where $G$ is a connected reductive complex affine algebraic group.