论文标题

图网的主要社区聚合

Principal Neighbourhood Aggregation for Graph Nets

论文作者

Corso, Gabriele, Cavalleri, Luca, Beaini, Dominique, Liò, Pietro, Veličković, Petar

论文摘要

图形神经网络(GNN)已被证明是图形结构数据不同预测任务的有效模型。他们表达能力的最新工作集中在同构任务和可数特征空间上。我们将这个理论框架扩展到包括连续特征 - 这些特征定期在现实世界输入域和GNNS的隐藏层中发生 - 我们证明了在这种情况下对多个聚集功能的要求。因此,我们提出了主要的邻域聚集(PNA),这是一种新型架构,将多个聚合器与学位范围组合(概括总计聚合器)相结合。最后,我们比较了不同模型通过包含从经典图理论采取多个任务的新基准捕获和利用图形结构的能力,以及来自现实世界域的现有基准测试,所有这些都证明了我们模型的强度。通过这项工作,我们希望将一些GNN研究引导到新的聚合方法中,我们认为这对于寻找强大而强大的模型至关重要。

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源