论文标题
NISQ设备上的实用数值集成
Practical numerical integration on NISQ devices
论文作者
论文摘要
本文介绍了数值集成中使用的量子算法的实际方面,特别是它们在嘈杂的中间尺度量子(NISQ)设备上实现。数值整合的量子算法利用量子振幅估计(QAE)(Brassard等,2002)与Grovers算法结合使用。但是,QAE在NISQ设备上实施越来越大,因为它通常依赖于量子阶段估计(QPE),这需要许多Ancilla Qubits和受控操作。为了减轻这些挑战,最近发表的QAE算法(Suzuki等,2020)不依赖QPE,需要少量的受控操作,并且不需要附加量。我们使用Qiskit在IBM量子设备上实现了该新算法,以在IBM量子设备上进行数值集成,并在每个目标设备上优化电路。我们讨论了该算法在两个量子位上的应用及其在NISQ设备上超过两个量子位的应用。
This paper addresses the practical aspects of quantum algorithms used in numerical integration, specifically their implementation on Noisy Intermediate-Scale Quantum (NISQ) devices. Quantum algorithms for numerical integration utilize Quantum Amplitude Estimation (QAE) (Brassard et al., 2002) in conjunction with Grovers algorithm. However, QAE is daunting to implement on NISQ devices since it typically relies on Quantum Phase Estimation (QPE), which requires many ancilla qubits and controlled operations. To mitigate these challenges, a recently published QAE algorithm (Suzuki et al., 2020), which does not rely on QPE, requires a much smaller number of controlled operations and does not require ancilla qubits. We implement this new algorithm for numerical integration on IBM quantum devices using Qiskit and optimize the circuit on each target device. We discuss the application of this algorithm on two qubits and its scalability to more than two qubits on NISQ devices.