论文标题
在中心化的群体上有限制的群体
On profinite groups in which centralizers have bounded rank
论文作者
论文摘要
对于一个正整数r,我们证明,如果G是一个涂鸦群,每个非平凡元素的中央器最多都具有r等级,则G是Pro-P组或一组有限等级。此外,如果G几乎不是Pro-P组,则G实际上是R+1的排名。
For a positive integer r we prove that if G is a profinite group in which the centralizer of every nontrivial element has rank at most r, then G is either a pro-p group or a group of finite rank. Further, if G is not virtually a pro-p group, then G is virtually of rank at most r+1.