论文标题
ControlVae:可控的变异自动编码器
ControlVAE: Controllable Variational Autoencoder
论文作者
论文摘要
变异自动编码器(VAE)及其变体已被广泛用于多种应用中,例如对话框的生成,图像生成和删除表示形式学习。但是,现有的VAE模型在不同的应用程序中存在一些局限性。例如,vae很容易遭受语言建模的消失,而重建质量低得多。为了解决这些问题,我们提出了一个新颖的可控变分自动编码器框架ControlVae,该框架结合了一个受自动控制理论启发的控制器,以及基本的VAE,以提高所得生成模型的性能。具体而言,我们设计了一个新的非线性PI控制器,即比例综合衍生(PID)控制的变体,以自动调整VAE物镜中在模型训练过程中使用输出kl divergence作为反馈的VAE目标中添加的高参数(重量)。使用三个应用程序评估该框架;也就是说,语言建模,分解的表示形式学习和图像产生。结果表明,控制节可以比现有方法获得更好的解剖和重建质量。对于语言建模,它不仅避免了KL的变化,还可以改善生成的文本的多样性。最后,我们还证明了ControlVae与原始VAE相比提高了生成图像的重建质量。
Variational Autoencoders (VAE) and their variants have been widely used in a variety of applications, such as dialog generation, image generation and disentangled representation learning. However, the existing VAE models have some limitations in different applications. For example, a VAE easily suffers from KL vanishing in language modeling and low reconstruction quality for disentangling. To address these issues, we propose a novel controllable variational autoencoder framework, ControlVAE, that combines a controller, inspired by automatic control theory, with the basic VAE to improve the performance of resulting generative models. Specifically, we design a new non-linear PI controller, a variant of the proportional-integral-derivative (PID) control, to automatically tune the hyperparameter (weight) added in the VAE objective using the output KL-divergence as feedback during model training. The framework is evaluated using three applications; namely, language modeling, disentangled representation learning, and image generation. The results show that ControlVAE can achieve better disentangling and reconstruction quality than the existing methods. For language modelling, it not only averts the KL-vanishing, but also improves the diversity of generated text. Finally, we also demonstrate that ControlVAE improves the reconstruction quality of generated images compared to the original VAE.