论文标题
$ 3 $ -L-L-Dendriform代数和广义推导
$3$-L-dendriform algebras and generalized derivations
论文作者
论文摘要
本文的主要目的是介绍$ 3 $ -L树立形式代数的概念,该概念是$ 3 $ -PRE-LIE代数的树突状版本。实际上,它们是$ \ Mathcal {o} $的代数结构 - $ 3 $ -PRE-LIE代数的操作员。它们也可以被视为l树状形式代数的三元类似物。此外,我们研究了$ 3 $ -L树突状代数的广义推导。最后,我们探索了准衍生物,质心和准式易感的空间,并具有一些特性。
The main goal of this paper is to introduce the notion of $3$-L-dendriform algebras which are the dendriform version of $3$-pre-Lie algebras. In fact they are the algebraic structures behind the $\mathcal{O}$-operator of $3$-pre-Lie algebras. They can be also regarded as the ternary analogous of L-dendriform algebras. Moreover, we study the generalized derivations of $3$-L-dendriform algebras. Finally, we explore the spaces of quasi-derivations, the centroids and the quasi-centroids and give some properties.