论文标题

朝向山谷耦合旋转Qubit

Toward Valley-coupled Spin Qubits

论文作者

Goh, Kuan Eng Johnson, Bussolotti, Fabio, Lau, Chit Siong, Kotekar-Patil, Dharmraj, Ooi, Zi En, Chee, Jingyee

论文摘要

竞标可扩展的物理量他的竞标吸引了许多可能的候选平台。特别是,固态形态中的基于自旋的量子位具有吸引力,因为它们可能受益于类似于常规半导体处理的过程。然而,对于固态自旋速度的材料控制是底物,介电,电极或污染物的残余旋转,导致自旋反应有助于旋转。在最近的十年中,由于在单层过渡金属二核苷中发现了山谷耦合的旋转,因此Valleytronics的复兴。这种山谷耦合的旋转受到反转不对称和时间反向对称性的保护,并且是可靠量子的有前途的候选者。在本报告中,提出了建造此类量子位的进展。在介绍了制造此类量子位的关键景点之后,为每个关键步骤的状态提供了最新的简介,强调了所做的进步和/或未能完成的工作。该报告以未来发展的角度结论,强调了剩下的主要里程碑,朝着可伸缩的旋转量子箱方向迈进。

The bid for scalable physical qubits has attracted many possible candidate platforms. In particular, spin-based qubits in solid-state form factors are attractive as they could potentially benefit from processes similar to those used for conventional semiconductor processing. However, material control is a significant challenge for solid-state spin qubits as residual spins from substrate, dielectric, electrodes or contaminants from processing contribute to spin decoherence. In the recent decade, valleytronics has seen a revival due to the discovery of valley-coupled spins in monolayer transition metal dichalcogenides. Such valley-coupled spins are protected by inversion asymmetry and time-reversal symmetry and are promising candidates for robust qubits. In this report, the progress toward building such qubits is presented. Following an introduction to the key attractions in fabricating such qubits, an up-to-date brief is provided for the status of each key step, highlighting advancements made and/or outstanding work to be done. This report concludes with a perspective on future development highlighting major remaining milestones toward scalable spin-valley qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源