论文标题
用于混合车辆过境机队的路线级别能源使用的数据驱动预测
Data-Driven Prediction of Route-Level Energy Use for Mixed-Vehicle Transit Fleets
论文作者
论文摘要
由于对环境影响,运营成本和能源安全的担忧日益加剧,公共交通机构正在寻求通过使用电动汽车(EV)来减少其燃料的使用。但是,由于电动汽车的前期成本很高,大多数机构只能负担内燃机和电动汽车的混合舰队。充分利用这些混合舰队对代理商提出了挑战,因为优化车辆分配到过境路线,调度充电等需要准确地预测电力和燃料的使用。基于传感器的技术,数据分析和机器学习的最新进展使这种情况可以进行补救;但是,据我们所知,没有任何框架可以将所有相关数据整合到公共交通的路线级预测模型中。在本文中,我们提出了一个新颖的框架,用于数据驱动的混合车辆运输舰队的路线级别使用的预测,我们使用从田纳西州查塔努加的公共交通机构Carta收集的数据进行了评估。我们提供一个数据收集和存储框架,用于捕获系统级数据,包括流量和天气条件,以及高频车辆级别的数据,包括位置轨迹,燃料或用电等。我们介绍了特定于域的方法和算法,用于集成和清洁来自各种来源的数据,包括街道和高架图。最后,我们在集成数据集中训练和评估机器学习模型,包括深神经网络,决策树和线性回归。我们的结果表明,神经网络提供了准确的估计,而其他模型可以帮助我们发现能源使用与道路和天气状况等因素之间的关系。
Due to increasing concerns about environmental impact, operating costs, and energy security, public transit agencies are seeking to reduce their fuel use by employing electric vehicles (EVs). However, because of the high upfront cost of EVs, most agencies can afford only mixed fleets of internal-combustion and electric vehicles. Making the best use of these mixed fleets presents a challenge for agencies since optimizing the assignment of vehicles to transit routes, scheduling charging, etc. require accurate predictions of electricity and fuel use. Recent advances in sensor-based technologies, data analytics, and machine learning enable remedying this situation; however, to the best of our knowledge, there exists no framework that would integrate all relevant data into a route-level prediction model for public transit. In this paper, we present a novel framework for the data-driven prediction of route-level energy use for mixed-vehicle transit fleets, which we evaluate using data collected from the bus fleet of CARTA, the public transit authority of Chattanooga, TN. We present a data collection and storage framework, which we use to capture system-level data, including traffic and weather conditions, and high-frequency vehicle-level data, including location traces, fuel or electricity use, etc. We present domain-specific methods and algorithms for integrating and cleansing data from various sources, including street and elevation maps. Finally, we train and evaluate machine learning models, including deep neural networks, decision trees, and linear regression, on our integrated dataset. Our results show that neural networks provide accurate estimates, while other models can help us discover relations between energy use and factors such as road and weather conditions.