论文标题
自适应影响最大化的有效近似算法
Efficient Approximation Algorithms for Adaptive Influence Maximization
论文作者
论文摘要
鉴于社交网络$ g $和整数$ k $,影响最大化(IM)问题要求从$ g $的$ k $节点$ s $ s $ s $ s $ s $ g $,以最大化通过传播模型影响的预期节点数量。 IM问题的大多数现有算法仅在非自适应环境下开发,即,在一批中选择了所有$ k $种子节点,而没有观察到它们如何影响现实世界中的其他用户。在本文中,我们研究了自适应IM问题,其中$ k $种子节点是在相等尺寸$ b $的批次中选择的,因此在观察到以前的$ i-1 $批次的实际影响结果之后,确定了$ i $ $ th批次。 In this paper, we propose the first practical algorithm for the adaptive IM problem that could provide the worst-case approximation guarantee of $1-\mathrm{e}^{ρ_b(\varepsilon-1)}$, where $ρ_b=1-(1-1/b)^b$ and $\varepsilon \in (0, 1)$ is a user-specified parameter.特别是,我们提出了一个通用框架适应性,可以通过任何现有的非自适应IM算法实例化具有预期的近似保证。我们的方法基于一种新型的随机政策,该政策适用于一般自适应随机最大化问题,这可能具有独立的兴趣。此外,我们提出了一种称为EPIC的新型非自适应IM算法,该算法不仅提供了强大的预期近似保证,而且与现有的IM算法相比,表现出色。同时,我们在最近的工作中阐明了一些现有的误解,并阐明了对自适应IM问题的进一步研究。我们对真实社交网络进行实验,以全面评估我们提出的算法,实验结果强烈证实了我们方法的优势和有效性。
Given a social network $G$ and an integer $k$, the influence maximization (IM) problem asks for a seed set $S$ of $k$ nodes from $G$ to maximize the expected number of nodes influenced via a propagation model. The majority of the existing algorithms for the IM problem are developed only under the non-adaptive setting, i.e., where all $k$ seed nodes are selected in one batch without observing how they influence other users in real world. In this paper, we study the adaptive IM problem where the $k$ seed nodes are selected in batches of equal size $b$, such that the $i$-th batch is identified after the actual influence results of the former $i-1$ batches are observed. In this paper, we propose the first practical algorithm for the adaptive IM problem that could provide the worst-case approximation guarantee of $1-\mathrm{e}^{ρ_b(\varepsilon-1)}$, where $ρ_b=1-(1-1/b)^b$ and $\varepsilon \in (0, 1)$ is a user-specified parameter. In particular, we propose a general framework AdaptGreedy that could be instantiated by any existing non-adaptive IM algorithms with expected approximation guarantee. Our approach is based on a novel randomized policy that is applicable to the general adaptive stochastic maximization problem, which may be of independent interest. In addition, we propose a novel non-adaptive IM algorithm called EPIC which not only provides strong expected approximation guarantee, but also presents superior performance compared with the existing IM algorithms. Meanwhile, we clarify some existing misunderstandings in recent work and shed light on further study of the adaptive IM problem. We conduct experiments on real social networks to evaluate our proposed algorithms comprehensively, and the experimental results strongly corroborate the superiorities and effectiveness of our approach.