论文标题

当模型不可行时,在纵向研究中实施多个插入液以丢失数据:关于随机热甲板方法的教程

Implementing multiple imputation for missing data in longitudinal studies when models are not feasible: A tutorial on the random hot deck approach

论文作者

Wang, Chinchin, Stokes, Tyrel, Steele, Russell, Wedderkopp, Niels, Shrier, Ian

论文摘要

目的:研究人员经常使用基于模型的多重插定来处理随机数据的缺失,以最大程度地减少偏见,同时充分利用所有可用数据。但是,数据中有时会有限制,这使基于模型的插补变得困难,并且可能导致不可行的值。在这些情况下,我们描述了如何使用随机热甲板插补以允许在纵向研究中进行合理的多重插补。 研究设计和环境:我们使用儿童健康,活动和运动性能学校学习丹麦(Champs-DK)进行了随机热甲板多重插补,这是一项前瞻性队列研究,测量了1700个丹麦学童的每周体育参与。我们将记录与缺少数据匹配到几个观察到的记录,使用观察到的数据生成的匹配记录生成概率,并根据每个发生的概率从这些记录中取样。由于估算值是随机生成的,因此可以创建和分析多个完整的数据集,类似于基于模型的多重插补。 结论:当基于模型的方法是不可行的,特别是在协变量之间存在约束的地方时,使用随机热甲板插补的多次插补是一种替代方法。

Objective: Researchers often use model-based multiple imputation to handle missing at random data to minimize bias while making the best use of all available data. However, there are sometimes constraints within the data that make model-based imputation difficult and may result in implausible values. In these contexts, we describe how to use random hot deck imputation to allow for plausible multiple imputation in longitudinal studies. Study Design and Setting: We illustrate random hot deck multiple imputation using The Childhood Health, Activity, and Motor Performance School Study Denmark (CHAMPS-DK), a prospective cohort study that measured weekly sports participation for 1700 Danish schoolchildren. We matched records with missing data to several observed records, generated probabilities for matched records using observed data, and sampled from these records based on the probability of each occurring. Because imputed values are generated randomly, multiple complete datasets can be created and analyzed similar to model-based multiple imputation. Conclusion: Multiple imputation using random hot deck imputation is an alternative method when model-based approaches are infeasible, specifically where there are constraints within and between covariates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源