论文标题
Quark-Gluon等离子体的重夸克和夸克尼亚的耦合玻尔兹曼传输方程
Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma
论文作者
论文摘要
我们开发了一个耦合传输方程的框架,以实现开放的浓密风味和夸克状态,以描述它们在夸克 - 葡萄糖等离子体中的运输。我们的框架能够在重离子碰撞实验中同时研究开放和隐藏的重型风味,并且可以解释不相关和相关的重组。我们的重组实施取决于实时开放式夸克和古夸克分布。我们进行一致性测试,以展示开放式繁重的风味传输,Quarkonium解离和重组之间的相互作用如何使系统达到平衡。然后,我们将我们的框架应用于重型离子碰撞中的底部生产。我们包括$υ(1s)$,$υ(2s)$,$υ(3s)$,$χ_b(1p)$和$χ_b(2p)$(2p)$(2p)$(2p)$,并在HADRONES GAS阶段中考虑下来的捐助。冷核物质效应包括使用核部分分布函数来初始原始浓度产生。校准的$ 2+1 $尺寸粘性流体动力学用于描述批量QCD培养基。我们计算了所有底部核心状态的核修饰因子$ r _ {\ mathrm {aa}} $,以及$υ(1S)$状态的Azimuthal Anisotropy系数$ v_2 $ v_2 $,并发现我们的结果与实验测量合理地一致。我们的计算表明,在当前重离子实验中,相关的串扰重组是底部的重要生产机制。可以通过测量$ r _ {\ mathrm {aa}}(χ_b(1p))$和$ r _ {\ Mathrm {aa}}}(Aa}}}(∂(2S))$的比率来实验测试相关重组的重要性。
We develop a framework of coupled transport equations for open heavy flavor and quarkonium states, in order to describe their transport inside the quark-gluon plasma. Our framework is capable of studying simultaneously both open and hidden heavy flavor observables in heavy-ion collision experiments and can account for both, uncorrelated and correlated recombination. Our recombination implementation depends on real-time open heavy quark and antiquark distributions. We carry out consistency tests to show how the interplay among open heavy flavor transport, quarkonium dissociation and recombination drives the system to equilibrium. We then apply our framework to study bottomonium production in heavy-ion collisions. We include $Υ(1S)$, $Υ(2S)$, $Υ(3S)$, $χ_b(1P)$ and $χ_b(2P)$ in the framework and take feed-down contributions during the hadronic gas stage into account. Cold nuclear matter effects are included by using nuclear parton distribution functions for the initial primordial heavy flavor production. A calibrated $2+1$ dimensional viscous hydrodynamics is used to describe the bulk QCD medium. We calculate both the nuclear modification factor $R_{\mathrm{AA}}$ of all bottomonia states and the azimuthal angular anisotropy coefficient $v_2$ of the $Υ(1S)$ state and find that our results agree reasonably with experimental measurements. Our calculations indicate that correlated cross-talk recombination is an important production mechanism of bottomonium in current heavy-ion experiments. The importance of correlated recombination can be tested experimentally by measuring the ratio of $R_{\mathrm{AA}}(χ_b(1P))$ and $R_{\mathrm{AA}}(Υ(2S))$.