论文标题

非线性复发在饮酒社区中传染的作用

The Role of Nonlinear Relapse on Contagion Amongst Drinking Communities

论文作者

Cintrón-Arias, Ariel, Sánchez, Fabio, Wang, Xiaohong, Castillo-Chavez, Carlos, Gorman, Dennis M., Gruenewald, Paul J.

论文摘要

复发,症状缓解后疾病的复发是药物滥用障碍的经常结果。我们先前的一些结果表明,在滥用饮酒的情况下,复发可能是“无与伦比的”力量,只要恢复的个体继续在导致和/或增强滥用饮酒行为的持续性的环境中相互作用。我们的早期结果是通过忽略个人之间差异的确定性模型获得的,即在一个相当简单的“社会”环境中。在本文中,我们解决了复发在饮酒动力学方面的作用,但使用结合“机会”角色或高度“社会”异质性或两者兼而有之的模型。我们的重点主要是复发率很高的情况。我们首先使用马尔可夫链模型来模拟复发对饮酒动态的影响。这些模拟加强了以前获得的结论,当比较确定性和随机模型的结果时,会出现通常的警告。然而,通过随机实现在小世界网络中的“同等”饮酒过程的随机实现而产生的仿真结果,通过疾病参数$ p $进行了参数,表明该家庭中没有社交结构能够降低高复发率对饮酒患者的影响,即使我们极大地限制了个人之间的相互作用($ p \ p \ lift $ p \ lift $ p。

Relapse, the recurrence of a disorder following a symptomatic remission, is a frequent outcome in substance abuse disorders. Some of our prior results suggested that relapse, in the context of abusive drinking, is likely an "unbeatable" force as long as recovered individuals continue to interact in the environments that lead to and/or reinforce the persistence of abusive drinking behaviors. Our earlier results were obtained via a deterministic model that ignored differences between individuals, that is, in a rather simple "social" setting. In this paper, we address the role of relapse on drinking dynamics but use models that incorporate the role of "chance", or a high degree of "social" heterogeneity, or both. Our focus is primarily on situations where relapse rates are high. We first use a Markov chain model to simulate the effect of relapse on drinking dynamics. These simulations reinforce the conclusions obtained before, with the usual caveats that arise when the outcomes of deterministic and stochastic models are compared. However, the simulation results generated from stochastic realizations of an "equivalent" drinking process in populations "living" in small world networks, parameterized via a disorder parameter $p$, show that there is no social structure within this family capable of reducing the impact of high relapse rates on drinking prevalence, even if we drastically limit the interactions between individuals ($p\approx 0$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源