论文标题
以树结构成本和Schrödinger桥问题的多界最佳运输
Multi-marginal Optimal Transport with a Tree-structured cost and the Schrödinger Bridge Problem
论文作者
论文摘要
最佳运输问题最近已发展为一个强大的框架,用于估计和控制方面的各种应用。最佳运输理论和应用的最新进展都是基于将问题定于熵项的正规化问题,该术语将其连接到Schrödinger桥问题,从而将其连接到随机的最佳控制。此外,熵正规化使原本计算的最佳运输问题即使在大规模设置中也是可行的。这导致在广泛的领域中加速了基于最佳运输方法的发展。这些应用中的许多应用具有基础图结构,例如,可以通过树木描述信息融合和跟踪问题。在这项工作中,我们考虑了根据树结构将成本函数分解的多边界最佳运输问题。熵正规化的多界数最佳运输问题可以被视为具有相同树结构的Schrödinger桥问题的概括,并且通过利用这些连接,我们扩展了经典最佳运输问题的计算方法,以便以有效的方式求解结构性的多型多 - 核心最佳运输问题。特别是,该算法仅需要相对较小的尺寸的矩阵矢量乘法。我们表明,与常用的成对正则化相比,多界定正则化引入的扩散较少,因此更适合许多应用。数值示例说明了这一点,我们最终将提出的框架应用于跟踪无法区分的代理集合。
The optimal transport problem has recently developed into a powerful framework for various applications in estimation and control. Many of the recent advances in the theory and application of optimal transport are based on regularizing the problem with an entropy term, which connects it to the Schrödinger bridge problem and thus to stochastic optimal control. Moreover, the entropy regularization makes the otherwise computationally demanding optimal transport problem feasible even for large scale settings. This has lead to an accelerated development of optimal transport based methods in a broad range of fields. Many of these applications have a underlying graph structure, for instance information fusion and tracking problems can be described by trees. In this work we consider multi-marginal optimal transport problems with a cost function that decouples according to a tree structure. The entropy regularized multi-marginal optimal transport problem can be viewed as a generalization of the Schrödinger bridge problem with the same tree-structure, and by utilizing these connections we extend the computational methods for the classical optimal transport problem in order to solve structured multi-marginal optimal transport problems in an efficient manner. In particular, the algorithm requires only matrix-vector multiplications of relatively small dimensions. We show that the multi-marginal regularization introduces less diffusion, compared to the commonly used pairwise regularization, and is therefore more suitable for many applications. Numerical examples illustrate this, and we finally apply the proposed framework for tracking of an ensemble of indistinguishable agents.