论文标题

从RGB图像的光谱重建的轻度残留量密集的注意网

Light Weight Residual Dense Attention Net for Spectral Reconstruction from RGB Images

论文作者

Nathan, D. Sabari, Uma, K., Vinothini, D Synthiya, Bama, B. Sathya, Roomi, S. M. Md Mansoor

论文摘要

高光谱成像是对特定场景的光谱和空间信息的获取。从专门的高光谱相机中捕获此类信息仍然昂贵。从RGB图像中重建此类信息可以在分类和对象识别任务中获得更好的解决方案。这项工作提出了一个新型的轻质网络,其参数数量少于233,059个参数,该参数基于剩余密集模型,并具有注意机制以获得该解决方案。该网络使用协调卷积块获取空间信息。该块的权重通过两个独立的特征提取机制共享,一种由密集特征提取,另一个由多尺度分层特征提取。最后,两种特征提取机制的特征在全球融合中融合以产生31个光谱带。该网络经过NTIRE 2020挑战数据集的训练,因此获得了0.0457 MRAE度量值,计算复杂性较小。

Hyperspectral Imaging is the acquisition of spectral and spatial information of a particular scene. Capturing such information from a specialized hyperspectral camera remains costly. Reconstructing such information from the RGB image achieves a better solution in both classification and object recognition tasks. This work proposes a novel light weight network with very less number of parameters about 233,059 parameters based on Residual dense model with attention mechanism to obtain this solution. This network uses Coordination Convolutional Block to get the spatial information. The weights from this block are shared by two independent feature extraction mechanisms, one by dense feature extraction and the other by the multiscale hierarchical feature extraction. Finally, the features from both the feature extraction mechanisms are globally fused to produce the 31 spectral bands. The network is trained with NTIRE 2020 challenge dataset and thus achieved 0.0457 MRAE metric value with less computational complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源