论文标题
使用英国生物库中的深度学习框架从CMR标记的图像中完全自动化的心肌应变估计
Fully Automated Myocardial Strain Estimation from CMR Tagged Images using a Deep Learning Framework in the UK Biobank
论文作者
论文摘要
目的:展示一个完全自动化的深度学习框架的可行性和性能,以估算短轴心脏磁共振标记的图像中的心肌菌株。方法和材料:在这项回顾性横断面研究中,将4508例来自英国生物库的病例随机分为3244个培训和812例验证病例,以及452例测试案例。通过手动初始化并使用先前验证的软件与五名读者对可变形图像注册进行了手动初始化和校正,对地面真相心肌地标进行了定义和跟踪。全自动框架由1)用于定位的卷积神经网络(CNN),以及2)复发性神经网络(RNN)和CNN组合,通过每个切片的图像序列检测和跟踪心肌地标。然后根据地标的运动计算径向和圆周应变,并以切片为平均。结果:在测试集中,心肌终端终止周向绿色应变误差分别为-0.001 +/- 0.025,-0.001 +/- 0.021和0.004 +/- 0.035,基础,中和根尖切片中的均值+/- std。该框架再现了糖尿病患者,高血压和先前心脏病发作的参与者的圆周菌株的显着减少。典型的处理时间为〜260帧(约13片切片),在Tesla K40上使用12GB RAM,而每片每片6-8分钟进行手动分析。结论:在高通量工作流程中,用于分析心肌菌株的完全自动化RNNCNN框架,具有与糖尿病,高血压和先前心脏病发作有关的障碍的能力相似。
Purpose: To demonstrate the feasibility and performance of a fully automated deep learning framework to estimate myocardial strain from short-axis cardiac magnetic resonance tagged images. Methods and Materials: In this retrospective cross-sectional study, 4508 cases from the UK Biobank were split randomly into 3244 training and 812 validation cases, and 452 test cases. Ground truth myocardial landmarks were defined and tracked by manual initialization and correction of deformable image registration using previously validated software with five readers. The fully automatic framework consisted of 1) a convolutional neural network (CNN) for localization, and 2) a combination of a recurrent neural network (RNN) and a CNN to detect and track the myocardial landmarks through the image sequence for each slice. Radial and circumferential strain were then calculated from the motion of the landmarks and averaged on a slice basis. Results: Within the test set, myocardial end-systolic circumferential Green strain errors were -0.001 +/- 0.025, -0.001 +/- 0.021, and 0.004 +/- 0.035 in basal, mid, and apical slices respectively (mean +/- std. dev. of differences between predicted and manual strain). The framework reproduced significant reductions in circumferential strain in diabetics, hypertensives, and participants with previous heart attack. Typical processing time was ~260 frames (~13 slices) per second on an NVIDIA Tesla K40 with 12GB RAM, compared with 6-8 minutes per slice for the manual analysis. Conclusions: The fully automated RNNCNN framework for analysis of myocardial strain enabled unbiased strain evaluation in a high-throughput workflow, with similar ability to distinguish impairment due to diabetes, hypertension, and previous heart attack.