论文标题
用VolNA-OP2建模:迈向海啸威胁减少
Modelling with Volna-OP2: Towards tsunami threat reduction
论文作者
论文摘要
准确有效的海啸建模对于提供海啸预测和危害评估至关重要。 VolNA-OP2是非线性浅水方程的有限体积求解器及其产生的能力比实时集合更快,并且在这里介绍了高分辨率的淹没研究。该代码是大规模并行的,并且可以利用各种高性能计算体系结构。当检测到地震时,源参数总是存在一些不确定性。产生比实时合奏更快的最大波高度,捕获这种不确定性的速度对海啸警告中心带来了很大的好处。 2003年的Boumerdes地震(Algeria)充当测试案例,用于显示VolNA-OP2在迅速预测区域最大波高度的能力。利用文献中提出的各种地震来源,并将大小缩小到模仿源的不确定性,在两个NVIDIA V100 GPU上的97s实时模拟了20个单独的地震实现。此外,还提出了里斯本1755海啸的合奏,重点是对爱尔兰海岸线的影响。在文献中再次得出各种地震来源并在区域范围内进行了模拟。最后,一项基于减少的整体结果的试点研究调查了里斯本海啸在爱尔兰海岸线的关键部分上的淹没。这项试验研究的结果强调,淹没限制在低洼地区,最大升级高度约为$ \ $ \ 340万美元。
Accurate and efficient tsunami modelling is essential for providing tsunami forecasts and hazard assessments. Volna-OP2 is a finite volume solver of the nonlinear shallow water equations and its capabilities of producing both faster than real time ensembles and high resolution inundation studies are presented here. The code is massively parallelised and can utilise various high performance computing architectures. When an earthquake is detected there is always some uncertainty on the source parameters. Generating a faster than real time ensemble for maximum wave heights which captures this uncertainty would be of great benefit to tsunami warning centres. The 2003 Boumerdes earthquake (Algeria) acts as a test case for showing Volna-OP2's ability at rapidly forecasting regional maximum wave heights. Drawing on various earthquake sources proposed in the literature and scaling the magnitudes to mimic uncertainty on the source, 20 separate earthquake realisations are simulated for 4 hours real time in 97s on two Nvidia V100 GPUs. Further a reduced ensemble of the Lisbon 1755 tsunami with an emphasis on the effects to the Irish coastline is presented. Where again various earthquake sources have been drawn from the literature and simulated on a regional scale. Finally, a pilot study which builds upon the reduced ensemble results investigates the inundation of a Lisbon tsunami on key sections of the Irish coastline. The results of this pilot study highlight that the inundation is constrained to low-lying areas with maximum run-up heights of $\approx 3.4m$ being found.