论文标题
手性有效野外理论的直接天体物理测试
Direct Astrophysical Tests of Chiral Effective Field Theory at Supranuclear Densities
论文作者
论文摘要
最近观察到具有引力波和X射线时序的中子恒星,在陆地实验中难以实现的密度很难实现冷致密物质的状态(EOS)方程。同时,对手性有效田间理论($χ$ eft)的可靠不确定性估计的EO的预测构成了我们的理论无知。在这项工作中,我们使用以$χ$ eft为条件的中子星EOS的非参数表示,分析天体物理数据,以直接限制紧凑型物体的基本物理特性。我们讨论在低密度下以$χ$ eft的条件时,单独的数据如何在高密度下限制EOS。我们还展示了如何利用天体物理数据以直接测试EOS $χ$ EFT的预测,最高两倍,并估计这些预测可能分解的密度。我们发现,存在巨大的脉冲星,GW170817的引力波以及PSR J0030+0451的更好的观察结果,即EOS对EOS的预测到核饱和度密度,而不是核饱和度分析,而不是Quantum Monte Carlo(QMC)在此工作中使用的量子(QMC)的7个。虽然使用QMC进行$χ$ EFT预测与最高两倍的核饱和密度的重力波数据完全一致,但更好的观察结果表明,EOS相对于这些预测在核饱和密度下的预测僵硬。此外,我们在$χ$ eft开始分解的密度的不确定性上处于边缘地位,将$ 1.4 \,m_ \ odot $中子星的半径限制为$ r_ {1.4} = 11.40} = 11.40^{+1.38}以及两次核饱和密度的压力至$ p(2n_ \ mathrm {sat})= 14.2^{+18.1} _ { - 8.4} $($ 28.7^{+15.3} _ { - 15.0} $ 15.0} $^3 $ avermagive pulsar and gravitational and gravitational-wave(and Nighational-wave)
Recent observations of neutron stars with gravitational waves and X-ray timing provide unprecedented access to the equation of state (EoS) of cold dense matter at densities difficult to realize in terrestrial experiments. At the same time, predictions for the EoS with reliable uncertainty estimates from chiral effective field theory ($χ$EFT) bound our theoretical ignorance. In this work, we analyze astrophysical data using a nonparametric representation of the neutron-star EoS conditioned on $χ$EFT to directly constrain the underlying physical properties of the compact objects. We discuss how the data alone constrain the EoS at high densities when we condition on $χ$EFT at low densities. We also demonstrate how to exploit astrophysical data to directly test the predictions of $χ$EFT for the EoS up to twice nuclear saturation density, and estimate the density at which these predictions might break down. We find that the existence of massive pulsars, gravitational waves from GW170817, and NICER observations of PSR J0030+0451 favor $χ$EFT predictions for the EoS up to nuclear saturation density over a more agnostic analysis by as much as a factor of 7 for the quantum Monte Carlo (QMC) calculations used in this work. While $χ$EFT predictions using QMC are fully consistent with gravitational-wave data up to twice nuclear saturation density, NICER observations suggest that the EoS stiffens relative to these predictions at nuclear saturation density. Additionally, we marginalize over the uncertainty in the density at which $χ$EFT begins to break down, constraining the radius of a $1.4\,M_\odot$ neutron star to $R_{1.4}=11.40^{+1.38}_{-1.04}$ ($12.54^{+0.71}_{-0.63}$) km and the pressure at twice nuclear saturation density to $p(2n_\mathrm{sat})=14.2^{+18.1}_{-8.4}$ ($28.7^{+15.3}_{-15.0}$) MeV/fm$^3$ with massive pulsar and gravitational-wave (and NICER) data.