论文标题
球形贝叶斯质量图与不确定性:天体上的全天空观测
Spherical Bayesian mass-mapping with uncertainties: full sky observations on the celestial sphere
论文作者
论文摘要
迄今为止,较弱的重力镜头调查通常仅限于较小的视野,因此$ \ textIt {Flat-Sky近似} $已足够满足。但是,随着第四阶段的调查($ \ textit {例如lsst} $和$ \ textit {euclid} $)即将到来,将质量映射技术扩展到球体是基本的必要性。因此,我们将以前作品中呈现的稀疏分层贝叶斯大规模映射形式主义扩展到球形天空。这是第一次,这使我们能够构建$ \ textit {maumment a parsteriori} $球形弱透镜深色质量图,并具有原则上的贝叶斯不确定性,而不会施加或假设高斯。我们在分析设置中解决了球形质量映射的反问题,该分析设置采用了稀疏性,促进了拉普拉斯型小波,尽管该理论框架支持了所有对数洞的后代。我们的球形质量映射形式主义促进了重建的原则统计解释。我们将我们的框架应用于高分辨率N体仿真的融合重建,并使用伪欧成功掩蔽,并受到各种逼真的噪声水平污染,并且与标准方法相比,重建保真度的显着增加。此外,迄今为止,我们执行了最大的联合重建,迄今为止,大多数公开可用的剪切观测数据集(结合Desy1,Kids450和Cfhtlens),发现我们的形式主义恢复了具有显着增强的小规模细节的收敛图。在我们的贝叶斯框架内,我们以统计上的严格方式验证了社区关于平滑球形kaiser-squires估算以提供物理有意义的融合图的直觉。这种方法无法揭示我们在框架内恢复的小规模物理结构。
To date weak gravitational lensing surveys have typically been restricted to small fields of view, such that the $\textit{flat-sky approximation}$ has been sufficiently satisfied. However, with Stage IV surveys ($\textit{e.g. LSST}$ and $\textit{Euclid}$) imminent, extending mass-mapping techniques to the sphere is a fundamental necessity. As such, we extend the sparse hierarchical Bayesian mass-mapping formalism presented in previous work to the spherical sky. For the first time, this allows us to construct $\textit{maximum a posteriori}$ spherical weak lensing dark-matter mass-maps, with principled Bayesian uncertainties, without imposing or assuming Gaussianty. We solve the spherical mass-mapping inverse problem in the analysis setting adopting a sparsity promoting Laplace-type wavelet prior, though this theoretical framework supports all log-concave posteriors. Our spherical mass-mapping formalism facilitates principled statistical interpretation of reconstructions. We apply our framework to convergence reconstruction on high resolution N-body simulations with pseudo-Euclid masking, polluted with a variety of realistic noise levels, and show a significant increase in reconstruction fidelity compared to standard approaches. Furthermore we perform the largest joint reconstruction to date of the majority of publicly available shear observational datasets (combining DESY1, KiDS450 and CFHTLens) and find that our formalism recovers a convergence map with significantly enhanced small-scale detail. Within our Bayesian framework we validate, in a statistically rigorous manner, the community's intuition regarding the need to smooth spherical Kaiser-Squires estimates to provide physically meaningful convergence maps. Such approaches cannot reveal the small-scale physical structures that we recover within our framework.