论文标题
关于小$ \ MATHCAL {C}^{2} $的复杂点的正常形式的结构 - 真正$ 4 $ -Manifolds嵌入复杂$ 3 $ -MANIFOLD的扰动
On structures of normal forms of complex points of small $\mathcal{C}^{2}$-perturbations of real $4$-manifolds embedded in a complex $3$-manifold
论文作者
论文摘要
我们将先前的结果扩展到一个小$ \ MATHCAL {C}^{2} $的复杂点的二次部分的行为,这是一个真正的$ 4 $ -Manifold嵌入在复杂$ 3 $ -MANIFOLD中的真实$ 4 $ manifold的扰动。我们描述了复杂点的正常形式的结构的变化。这是一个定理的直接结果,它阐明了小扰动如何改变一对一对任意的束和一个对称$ 2 \ times 2 $矩阵,相对于某个线性组的动作。
We extend our previous result on the behavior of the quadratic part of a complex points of a small $\mathcal{C}^{2}$-perturbation of a real $4$-manifold embedded in a complex $3$-manifold. We describe the change of the structure of a normal form of a complex point. It is an immediate consequence of a theorem clarifying how small perturbations can change the bundle of a pair of one arbitrary and one symmetric $2\times 2$ matrix with respect to an action of a certain linear group.