论文标题
IDDA:用于自动驾驶的大型多域数据集
IDDA: a large-scale multi-domain dataset for autonomous driving
论文作者
论文摘要
语义细分是自动驾驶的关键。在这种情况下,使用深层的视觉学习体系结构并不是一件容易的事,因为在创建合适的大规模注释数据集方面面临挑战。传统上,通过使用合成数据集来规避这个问题,这些数据集已成为该领域的流行资源。它们已被释放,需要开发能够关闭训练和测试数据之间的视觉域变化的语义分割算法。尽管使用人工数据会加剧,但即使对实际数据培训,问题在该领域也非常相关。实际上,天气状况,城市外观的观点变化和变化可能因汽车到汽车而异,甚至在测试时间甚至是单个特定车辆的情况下。如何在语义细分中处理域的适应,以及如何有效利用几个不同的数据分布(源域)是该领域的重要研究问题。为了支持这个方向的工作,本文为具有100多个不同源视觉域的语义分割提供了新的大规模合成数据集。该数据集的创建是为了明确解决七个不同城市类型的各种天气和观察点条件下训练和测试数据之间的域移动挑战。广泛的基准实验评估了数据集,展示了目前最新情况的公开挑战。该数据集将在以下网址提供:https://idda-dataset.github.io/home/。
Semantic segmentation is key in autonomous driving. Using deep visual learning architectures is not trivial in this context, because of the challenges in creating suitable large scale annotated datasets. This issue has been traditionally circumvented through the use of synthetic datasets, that have become a popular resource in this field. They have been released with the need to develop semantic segmentation algorithms able to close the visual domain shift between the training and test data. Although exacerbated by the use of artificial data, the problem is extremely relevant in this field even when training on real data. Indeed, weather conditions, viewpoint changes and variations in the city appearances can vary considerably from car to car, and even at test time for a single, specific vehicle. How to deal with domain adaptation in semantic segmentation, and how to leverage effectively several different data distributions (source domains) are important research questions in this field. To support work in this direction, this paper contributes a new large scale, synthetic dataset for semantic segmentation with more than 100 different source visual domains. The dataset has been created to explicitly address the challenges of domain shift between training and test data in various weather and view point conditions, in seven different city types. Extensive benchmark experiments assess the dataset, showcasing open challenges for the current state of the art. The dataset will be available at: https://idda-dataset.github.io/home/ .