论文标题
针对自适应对手的全动力图弹药率
Fully-Dynamic Graph Sparsifiers Against an Adaptive Adversary
论文作者
论文摘要
针对自适应对手设计动态图算法是动态图算法领域的主要目标。虽然一些这样的算法以跨越树木,匹配和单一源最短路径而闻名,但众所周知的是一个重要的原始图形散布器。面临的挑战是如何在不揭示算法对自适应对手的基本随机性的情况下几乎保留有关图形的大量信息(例如,全对距离和所有切割)。 在本文中,我们介绍了第一种非平凡的有效自适应算法,用于维持跨度和减少弹药夹。这些算法反过来又暗示了针对其他问题的现有算法的改进。我们的第一个算法维护了一个大小$ \ tilde o(n)$ polylog $(n)$(n)$摊销更新时间的polygog $(n)$ spanner。第二算法在$ \ tilde o(n^{1/k})中保持$ O(k)$ - 大小$ \ tilde o(n)$(n^{1/k})$ amortized更新时间,对于任何$ k \ ge1 $,是polylog $ $ k = \ log log(n)。第三个算法维护了Polylog $(n)$(n)$(n)$(n)$摊销更新时间的近似光谱弹脚。两种算法的摊销更新时间可以通过支付某些亚物质因素来使最坏情况。在我们的结果之前,有几乎最佳的算法反对荒谬的对手(例如Baswana等人[Talg'12]和Abraham等人[focs'16]),但唯一的非主体自适应动态算法需要$(N)$ O(n)$ a amortized更新时间,以维持$ 3 $ 3 $ 3 $ - 和$ 5 $-5 $ - -Spanner, $ O(N^{1+1/2})$和$ O(N^{1+1/3})$ [Ausiello等。 ESA'05]。 我们的结果基于两种新技术。第一种技术是一种通用的黑盒还原,它使我们可以假设该图仅经历边缘删除,更重要的是,它仍然是一个几乎均匀度的扩展器。我们称为主动重新采样的第二种技术。 [...]
Designing dynamic graph algorithms against an adaptive adversary is a major goal in the field of dynamic graph algorithms. While a few such algorithms are known for spanning trees, matchings, and single-source shortest paths, very little was known for an important primitive like graph sparsifiers. The challenge is how to approximately preserve so much information about the graph (e.g., all-pairs distances and all cuts) without revealing the algorithms' underlying randomness to the adaptive adversary. In this paper we present the first non-trivial efficient adaptive algorithms for maintaining spanners and cut sparisifers. These algorithms in turn imply improvements over existing algorithms for other problems. Our first algorithm maintains a polylog$(n)$-spanner of size $\tilde O(n)$ in polylog$(n)$ amortized update time. The second algorithm maintains an $O(k)$-approximate cut sparsifier of size $\tilde O(n)$ in $\tilde O(n^{1/k})$ amortized update time, for any $k\ge1$, which is polylog$(n)$ time when $k=\log(n)$. The third algorithm maintains a polylog$(n)$-approximate spectral sparsifier in polylog$(n)$ amortized update time. The amortized update time of both algorithms can be made worst-case by paying some sub-polynomial factors. Prior to our result, there were near-optimal algorithms against oblivious adversaries (e.g. Baswana et al. [TALG'12] and Abraham et al. [FOCS'16]), but the only non-trivial adaptive dynamic algorithm requires $O(n)$ amortized update time to maintain $3$- and $5$-spanner of size $O(n^{1+1/2})$ and $O(n^{1+1/3})$, respectively [Ausiello et al. ESA'05]. Our results are based on two novel techniques. The first technique, is a generic black-box reduction that allows us to assume that the graph undergoes only edge deletions and, more importantly, remains an expander with almost-uniform degree. The second technique we call proactive resampling. [...]