论文标题

纠缠复兴作为在有限量子系统中争夺的探测器

Entanglement revivals as a probe of scrambling in finite quantum systems

论文作者

Modak, Ranjan, Alba, Vincenzo, Calabrese, Pasquale

论文摘要

量子淬灭后的纠缠演变成为区分可整合与混沌(非集成)量子多体动力学的工具之一。遵循这种思路,我们在这里建议纠缠熵中的复兴为目的提供了有限大小的诊断基准。实际上,可集成的模型显示在有限系统中的块纠缠熵中表现出的周期性复兴。另一方面,在混乱的系统中,初始相关性被分散在全球自由度(信息争夺)中,并且这种下降被抑制。我们表明,对于集成系统,固定长度间隔衰减的纠缠的高度是具有总系统大小的功率定律,在破坏集成性时,观察到了更快的衰减,这会发出强烈的扰动。我们的结果通过自由屈光度和自由遗传理论中的精确数值技术以及时间依赖性密度矩阵的ren量化组中的精确数值技术进行了检查。

The entanglement evolution after a quantum quench became one of the tools to distinguish integrable versus chaotic (non-integrable) quantum many-body dynamics. Following this line of thoughts, here we propose that the revivals in the entanglement entropy provide a finite-size diagnostic benchmark for the purpose. Indeed, integrable models display periodic revivals manifested in a dip in the block entanglement entropy in a finite system. On the other hand, in chaotic systems, initial correlations get dispersed in the global degrees of freedom (information scrambling) and such a dip is suppressed. We show that while for integrable systems the height of the dip of the entanglement of an interval of fixed length decays as a power law with the total system size, upon breaking integrability a much faster decay is observed, signalling strong scrambling. Our results are checked by exact numerical techniques in free-fermion and free-boson theories, and by time-dependent density matrix renormalisation group in interacting integrable and chaotic models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源