论文标题
通过谐振旋转弹性散射对磁力耀斑的光谱修饰
Spectral Modification of Magnetar Flares by Resonant Cyclotron Scattering
论文作者
论文摘要
考虑了通过谐振磁体散射(RCS)对能量磁力耀斑的光谱修饰。在能量耀斑期间,从恒星表面附近的磁陷阱发射的火球发出的光子应与磁层电子或正面共同相互作用。我们通过一个简单的思想实验表明,这种散射颗粒有望在封闭的磁场线中以轻度相对论的速度移动,这将由于多普勒效应而稍微移动入射光子能量。我们通过单个RC开发了一种用于光谱修饰的玩具模型,该模型既结合了来自捕获的火球的逼真的种子光子光谱,又结合了颗粒的速度场,这是耀斑的磁层所特有的。我们证明我们的光谱模型可以通过单个参数有效地表征。火球的有效温度使我们能够以低计算成本拟合观察到的光谱。我们证明,我们的单个散射模型与SGR 1900+14的中间耀斑的快速/蝙蝠数据非常吻合,对应于$ t _ {\ rm eff} = 6 $ - $ 7 $ kev的有效火球温度,而bepposax/grbm数据的巨型flares的巨型flares的巨型数据可能需要更加详细的散射,包括效率更高的散射。然而,由于没有用于磁光耀斑光谱的标准物理动机模型,因此我们的模型可能是研究磁力爆发的有用工具,从而阐明了耀斑的磁层的隐藏特性。
Spectral modification of energetic magnetar flares by resonant cyclotron scattering (RCS) is considered. During energetic flares, photons emitted from the magnetically-trapped fireball near the stellar surface should resonantly interact with magnetospheric electrons or positrons. We show by a simple thought experiment that such scattering particles are expected to move at mildly relativistic speeds along closed magnetic field lines, which would slightly shift the incident photon energy due to the Doppler effect. We develop a toy model for the spectral modification by a single RCS that incorporates both a realistic seed photon spectrum from the trapped fireball and the velocity field of particles, which is unique to the flaring magnetosphere. We show that our spectral model can be effectively characterized by a single parameter; the effective temperature of the fireball, which enables us to fit observed spectra with low computational cost. We demonstrate that our single scattering model is in remarkable agreement with Swift/BAT data of intermediate flares from SGR 1900+14, corresponding to effective fireball temperatures of $T_{\rm eff}=6$-$7$ keV, whereas BeppoSAX/GRBM data of giant flares from the same source may need more elaborate models including the effect of multiple scatterings. Nevertheless, since there is no standard physically-motivated model for magnetar flare spectra, our model could be a useful tool to study magnetar bursts, shedding light on the hidden properties of the flaring magnetosphere.