论文标题

可解释目标驱动的代理商和机器人 - 全面审查

Explainable Goal-Driven Agents and Robots -- A Comprehensive Review

论文作者

Sado, Fatai, Loo, Chu Kiong, Liew, Wei Shiung, Kerzel, Matthias, Wermter, Stefan

论文摘要

自主代理和机器人的最新应用,例如自动驾驶汽车,基于场景的培训师,勘探机器人和服务机器人,引起了人们对与当前人工智能(AI)系统相关的至关重要的信任相关挑战的关注。基于连接主义深度学习神经网络方法的AI系统尽管取得了巨大的成功,但仍无法向他人解释其决策和行动的能力。如果没有象征性的解释能力,它们就是黑匣子,它使他们的决策或行动不透明,因此很难在安全至关重要的应用中信任他们。最近关于AI系统解释性的立场见证了有关可解释的人工智能(XAI)的几种方法。但是,大多数研究都集中在计算科学应用的数据驱动的XAI系统上。解决越来越普遍的目标驱动的代理和机器人的研究仍然缺失。本文回顾了有关可解释的目标驱动的智能代理商和机器人的方法,重点是解释和交流感知功能(例如,感官和视觉)和认知推理(例如,信念,欲望,意图,计划和目标)的技术。该评论强调了强调透明度,可理解性和持续学习的关键策略,以解释性。最后,该论文提出了解释性的要求,并提出了可能实现有效的目标驱动器和机器人的路线图。

Recent applications of autonomous agents and robots, such as self-driving cars, scenario-based trainers, exploration robots, and service robots have brought attention to crucial trust-related challenges associated with the current generation of artificial intelligence (AI) systems. AI systems based on the connectionist deep learning neural network approach lack capabilities of explaining their decisions and actions to others, despite their great successes. Without symbolic interpretation capabilities, they are black boxes, which renders their decisions or actions opaque, making it difficult to trust them in safety-critical applications. The recent stance on the explainability of AI systems has witnessed several approaches on eXplainable Artificial Intelligence (XAI); however, most of the studies have focused on data-driven XAI systems applied in computational sciences. Studies addressing the increasingly pervasive goal-driven agents and robots are still missing. This paper reviews approaches on explainable goal-driven intelligent agents and robots, focusing on techniques for explaining and communicating agents perceptual functions (example, senses, and vision) and cognitive reasoning (example, beliefs, desires, intention, plans, and goals) with humans in the loop. The review highlights key strategies that emphasize transparency, understandability, and continual learning for explainability. Finally, the paper presents requirements for explainability and suggests a roadmap for the possible realization of effective goal-driven explainable agents and robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源