论文标题
DQ模型的积分表示定理
Integral representation theorems for DQ-modules
论文作者
论文摘要
我们确定$ \ mathbb {c}的类型[[\ hbar]] $ - 在变形量化模块理论中出现的$ \ infty $ - 类别中固有的线性结构。使用这种结构,我们表明,$ \ infty $ - 类准学上完整的DQ模型的$ \ infty $ - 类别是$ \ infty $ - 类准滑皮的$类别的变形。我们还获得了类似于Toën和Ben-Zvi-Nadler-Francis的DQ模型的积分表示结果,并指出DQ模型的$ \ infty $ - 类别之间的适当线性函子是整体变换。
We identify the type of $\mathbb{C}[[\hbar]]$-linear structure inherent in the $\infty$-categories which arise in the theory of Deformation Quantization modules. Using this structure, we show that the $\infty$-category of quasicoherent cohomologically complete DQ-modules is a deformation of the $\infty$-category of quasicoherent sheaves. We also obtain integral representation results for DQ-modules similar to the ones of Toën and Ben-Zvi-Nadler-Francis, stating that suitably linear functors between $\infty$-categories of DQ-modules are integral transforms.