论文标题
非绝热的几何量子计算,并最佳控制超导电路
Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
论文作者
论文摘要
量子门是量子计算机的必不可少的构建块,非常脆弱。因此,以高忠诚度实现强大的量子门是量子操纵的最终目标。在这里,我们在超导电路上提出了一种非绝热的几何量子计算方案,以设计任意量子门,该量子门具有与最佳控制技术相结合以进一步增强门的稳健性的能力。具体而言,在我们的提案中,可以通过共振的微波场驱动来实现任意几何单量门门,并且驱动器的幅度和相位均取决于时间依赖。同时,可以通过两个电容耦合的Transmon Qutbits来实现非平凡的两Q Q Q Q Q Q Q Q Q Q Q Q Q季度的几何门,其中一个Transmon Qubits的频率之一被调制以获得它们之间的有效谐振耦合。因此,我们的方案提供了朝着容忍固态量子计算的有希望的步骤。
Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being time-dependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits' frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.