论文标题
使用潜在空间插值研究宇宙学gan模拟器
Investigating Cosmological GAN Emulators Using Latent Space Interpolation
论文作者
论文摘要
最近已将生成对抗网络(GAN)作为大规模结构模拟的新型仿真技术。最近的结果表明,GAN可以用作快速,高效和计算上的廉价仿真器,以生成新型的弱透镜收敛图以及2-D和3-D中的宇宙Web数据。但是,像任何算法一样,GAN方法具有一系列局限性,例如不稳定的训练程序和产生的输出的固有随机性。在这项工作中,我们采用了机器学习文献中常用的许多技术来解决上述局限性。特别是,我们训练一个gan,以产生弱透镜收敛图和暗物质过度田间数据,以用于多个红移,宇宙学参数和修饰的重力模型。此外,我们使用最新的插图数据训练gan,以同时模拟暗物质,气体和内部能量分布数据。最后,我们应用潜在空间插值的技术来控制输出算法产生的输出。我们的结果表明,根据所使用的数据集以及是否应用高斯平滑,GAN生产的功率谱与训练数据样本之间的差异为1-20%。最后,对生成模型的最新研究表明,这种算法可以视为从较低维输入(潜在)到更高维(数据)歧管的映射。我们探讨了这样的理论描述,作为一种工具,可以更好地理解潜在空间插值过程。
Generative adversarial networks (GANs) have been recently applied as a novel emulation technique for large scale structure simulations. Recent results show that GANs can be used as a fast, efficient and computationally cheap emulator for producing novel weak lensing convergence maps as well as cosmic web data in 2-D and 3-D. However, like any algorithm, the GAN approach comes with a set of limitations, such as an unstable training procedure and the inherent randomness of the produced outputs. In this work we employ a number of techniques commonly used in the machine learning literature to address the mentioned limitations. In particular, we train a GAN to produce both weak lensing convergence maps and dark matter overdensity field data for multiple redshifts, cosmological parameters and modified gravity models. In addition, we train a GAN using the newest Illustris data to emulate dark matter, gas and internal energy distribution data simultaneously. Finally, we apply the technique of latent space interpolation to control which outputs the algorithm produces. Our results indicate a 1-20% difference between the power spectra of the GAN-produced and the training data samples depending on the dataset used and whether Gaussian smoothing was applied. Finally, recent research on generative models suggests that such algorithms can be treated as mappings from a lower-dimensional input (latent) space to a higher dimensional (data) manifold. We explore such a theoretical description as a tool for better understanding the latent space interpolation procedure.