论文标题

基于不同的视网膜脉管系统分割方法和数学形态的自动视神经头部检测

Automated Optic Nerve Head Detection Based on Different Retinal Vasculature Segmentation Methods and Mathematical Morphology

论文作者

Tavakoli, Meysam, Nazar, Mahdieh, Golestaneh, Alireza, Kalantari, Faraz

论文摘要

计算机视觉和图像处理技术为医生提供了重要的帮助,并在不同的任务中减轻了工作量。特别是,从图像中识别感兴趣的对象,例如病变和解剖结构是一个具有挑战性且迭代的过程,可以通过成功的方式使用计算机视觉和图像处理方法来完成。视神经头(ONH)检测是视网膜图像分析算法的关键步骤。 ONH检测的目的是查找和检测其他视网膜地标和病变及其相应的直径,以用作测量视网膜中对象的长度参考。这项研究的目的是应用三种视网膜血管分割方法,高斯的边缘检测器,精明的边缘检测器和匹配的滤波器边缘检测器,以在正常的底面图像或视网膜病变存在下检测ONH(例如,糖尿病性视网膜病)。为了评估我们提出的方法的准确性,我们将我们提出的方法的输出与眼科医生在属于120张图像的测试集的视网膜图像上收集的地面真相数据进行了比较。如结果部分所示,通过使用高斯船只分割的Laplacian,我们的自动化算法在Chase-DB数据库中的20个颜色图像以及驱动器数据库中的所有图像中找到了18个ONHS,可在真实位置进行20个颜色图像。对于Canny船只进行分割,我们的自动化算法在Chase-DB数据库中的20张图像中找到16个ONHS,在驱动器数据库中的40张图像中有32张图像。最后,使用船体分割中的匹配过滤器,我们的算法在Chase-DB数据库中的20张图像和驱动器中的所有图像中找到了19个ONHS。

Computer vision and image processing techniques provide important assistance to physicians and relieve their workload in different tasks. In particular, identifying objects of interest such as lesions and anatomical structures from the image is a challenging and iterative process that can be done by using computer vision and image processing approaches in a successful manner. Optic Nerve Head (ONH) detection is a crucial step in retinal image analysis algorithms. The goal of ONH detection is to find and detect other retinal landmarks and lesions and their corresponding diameters, to use as a length reference to measure objects in the retina. The objective of this study is to apply three retinal vessel segmentation methods, Laplacian-of-Gaussian edge detector, Canny edge detector, and Matched filter edge detector for detection of the ONH either in the normal fundus images or in the presence of retinal lesions (e.g. diabetic retinopathy). To evaluate the accuracy of our proposed method, we compare the output of our proposed method with the ground truth data collected by ophthalmologists on retinal images belonging to a test set of 120 images. As shown in the results section, by using the Laplacian-of-Gaussian vessel segmentation, our automated algorithm finds 18 ONHs in true location for 20 color images in the CHASE-DB database and all images in the DRIVE database. For the Canny vessel segmentation, our automated algorithm finds 16 ONHs in true location for 20 images in the CHASE-DB database and 32 out of 40 images in the DRIVE database. And lastly, using the matched filter in the vessel segmentation, our algorithm finds 19 ONHs in true location for 20 images in the CHASE-DB database and all images in the DRIVE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源