论文标题
离子溶液的分子平均场理论:泊松 - 尼斯特·尼斯特·雄性模型
Molecular Mean-Field Theory of Ionic Solutions: a Poisson-Nernst-Planck-Bikerman Model
论文作者
论文摘要
我们已经开发了一种分子平均场理论(四阶泊松 - 北峰型荷兰犬理论),用于通过处理任何体积和形状的离子和水分子在生物离子通道中对离子和水流进行建模,并用间天间的空隙,水和离子离子和离子水和离子元素的极化。该理论还可以用于研究电池,燃料电池,纳米孔,多孔培养基,包括水泥,地热盐水,海洋系统等电解质溶液的热力学和电动性特性。该理论可以计算蛋白质和所有离子和水上水分子中所有原子中所有原子的电气和空间能量,同时保持电子分子的范围,同时又在电子中及其对用来的替代方案,并将具有模拟实验数据的复杂特性的介电培养基。该理论已通过Gramicidin A通道,L型钙通道,钾通道和钠/钙交换器的实验和分子动力学数据进行了验证,并具有来自蛋白质数据库的实际结构。还通过水溶液溶液中电动双层差分电容和离子活性的实验或蒙特卡洛数据进行了验证。我们对有关该理论最新颖的特性的文献进行了深入的评论,即水和离子的费米分布作为具有排除体积的经典颗粒,以及取决于盐浓度,温度,压力,远场,远场边界条件等的动态相关性。动态相关性是描述离子离子和离子 - 水相关性,离子溶液的介电响应(介电常数)以及具有单个相关长度参数的水分子极化的四阶差分算子的自洽输出函数。
We have developed a molecular mean-field theory -- fourth-order Poisson-Nernst-Planck-Bikerman theory -- for modeling ionic and water flows in biological ion channels by treating ions and water molecules of any volume and shape with interstitial voids, polarization of water, and ion-ion and ion-water correlations. The theory can also be used to study thermodynamic and electrokinetic properties of electrolyte solutions in batteries, fuel cells, nanopores, porous media including cement, geothermal brines, the oceanic system, etc. The theory can compute electric and steric energies from all atoms in a protein and all ions and water molecules in a channel pore while keeping electrolyte solutions in the extra- and intracellular baths as a continuum dielectric medium with complex properties that mimic experimental data. The theory has been verified with experiments and molecular dynamics data from the gramicidin A channel, L-type calcium channel, potassium channel, and sodium/calcium exchanger with real structures from the Protein Data Bank. It was also verified with the experimental or Monte Carlo data of electric double-layer differential capacitance and ion activities in aqueous electrolyte solutions. We give an in-depth review of the literature about the most novel properties of the theory, namely, Fermi distributions of water and ions as classical particles with excluded volumes and dynamic correlations that depend on salt concentration, composition, temperature, pressure, far-field boundary conditions etc. in a complex and complicated way as reported in a wide range of experiments. The dynamic correlations are self-consistent output functions from a fourth-order differential operator that describes ion-ion and ion-water correlations, the dielectric response (permittivity) of ionic solutions, and the polarization of water molecules with a single correlation length parameter.