论文标题
测试计算机翻译通过参考透明度
Testing Machine Translation via Referential Transparency
论文作者
论文摘要
由于深度神经网络的发展,近年来,机器翻译软件已取得了迅速的进步。人们通常会在日常生活中使用机器翻译软件,例如在外国餐馆订购食物,接受外国医生的医学诊断和治疗,并在线阅读国际政治新闻。但是,由于基本神经网络的复杂性和顽固性,现代机器翻译软件仍然远非强大,并且会产生较差或不正确的翻译。这可能导致误解,财务损失,对人身安全和健康的威胁以及政治冲突。为了解决此问题,我们引入了参考透明输入(RTI),这是一种简单,广泛适用的方法,用于验证机器翻译软件。参考透明的输入是一段文本,在不同上下文中使用时应具有相似的翻译。我们的实际实现,纯度,检测到该属性何时被翻译打破。为了评估RTI,我们使用纯度测试Google翻译和Bing Microsoft Translator,其中有200个未标记的句子,这些句子检测到了123和142的错误精度(79.3%和78.3%)。翻译误差是多种多样的,包括翻译不足,过度翻译,单词/短语误导,错误的修改和不清楚的逻辑的示例。
Machine translation software has seen rapid progress in recent years due to the advancement of deep neural networks. People routinely use machine translation software in their daily lives, such as ordering food in a foreign restaurant, receiving medical diagnosis and treatment from foreign doctors, and reading international political news online. However, due to the complexity and intractability of the underlying neural networks, modern machine translation software is still far from robust and can produce poor or incorrect translations; this can lead to misunderstanding, financial loss, threats to personal safety and health, and political conflicts. To address this problem, we introduce referentially transparent inputs (RTIs), a simple, widely applicable methodology for validating machine translation software. A referentially transparent input is a piece of text that should have similar translations when used in different contexts. Our practical implementation, Purity, detects when this property is broken by a translation. To evaluate RTI, we use Purity to test Google Translate and Bing Microsoft Translator with 200 unlabeled sentences, which detected 123 and 142 erroneous translations with high precision (79.3% and 78.3%). The translation errors are diverse, including examples of under-translation, over-translation, word/phrase mistranslation, incorrect modification, and unclear logic.