论文标题

部分可观测时空混沌系统的无模型预测

Well-Posedness of Evolutionary Navier-Stokes Equations with Forces of Low Regularity on Two-Dimensional Domains

论文作者

Casas, Eduardo, Kunisch, Karl

论文摘要

$ l^q(((0,t); \ Mathbf {w}^{ - 1,1,p}(ω))$ for $ p $和$ q $在适当的参数范围内的存在和唯一性在尺寸二维方程式二维方程式$ l^q((0,t); \ m mathbf {w}^{ - 1,p}(ω))$。包括空间测量值不均匀性的情况。对于关联的Stokes方程,适合良好的结果将以$ 1 <p,q <\ intty $ intunary的任意维度进行验证。

Existence and uniqueness of solutions to the Navier-Stokes equation in dimension two with forces in the space $L^q( (0,T); \mathbf{W}^{-1,p}(Ω))$ for $p$ and $q$ in appropriate parameter ranges are proven. The case of spatially measured-valued inhomogeneities is included. For the associated Stokes equation the well-posedness results are verified in arbitrary dimensions with $1 < p, q < \infty$ arbitrary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源