论文标题
人口大小对病原体传播的影响对19.19大流行扩散的预测
The Effect of Population Size for Pathogen Transmission on Prediction of COVID-19 Pandemic Spread
论文作者
论文摘要
极端的公共卫生干预措施在减轻Covid-19的本地和全球流行率和大流行潜力方面起着至关重要的作用。在这里,我们使用人群大小进行病原体传播来衡量公共卫生干预措施的强度,这是对流行病的现象和预测的关键特征变量。通过制定隐藏的马尔可夫动态系统并使用非线性过滤理论,我们在公共卫生干预下开发了一种随机流行动态模型。通过组合一个无用的过滤器和交互的多个模型过滤器,可以从国际可用的公共数据中估算模型参数和状态。此外,我们考虑人口规模的可计算性并提供其选择标准。我们估计中国和全球其他地区基本生殖数量的平均值为2.46(95%CI:2.41-2.51)和3.64(95%CI :( 3.55-3.72)。我们推断,GEC的潜在感染数量约为7.47*10^5(95%^5(95%CI)。 7.32*10^5-7.62*10^5)截至2020年4月2日。我们预测,GEC医院的感染峰值可能达到3.00*10^6的峰值,即,如果控制强度不变,则病原体传播的人口大小和流行病的范围保持不变。 1.84*10^6,1.27*10^6。
Extreme public health interventions play a critical role in mitigating the local and global prevalence and pandemic potential of COVID-19. Here, we use population size for pathogen transmission to measure the intensity of public health interventions, which is a key characteristic variable for nowcasting and forecasting of the epidemic. By formulating a hidden Markov dynamic system and using nonlinear filtering theory, we have developed a stochastic epidemic dynamic model under public health interventions. The model parameters and states are estimated in time from internationally available public data by combining an unscented filter and an interacting multiple model filter. Moreover, we consider the computability of the population size and provide its selection criterion. We estimate the mean of the basic reproductive number of China and the rest of the globe except China (GEC) to be 2.46 (95% CI: 2.41-2.51) and 3.64 (95% CI: (3.55-3.72), respectively. We infer that the number of latent infections of GEC is about 7.47*10^5 (95% CI: 7.32*10^5-7.62*10^5) as of April 2, 2020. We predict that the peak of infections in hospitals of GEC may reach 3.00*10^6 on the present trajectory, i.e., if the population size for pathogen transmission and epidemic parameters remains unchanged. If the control intensity is strengthened, e.g., 50% reduction or 75% reduction of the population size for pathogen transmission, the peak would decline to 1.84*10^6, 1.27*10^6, respectively.