论文标题
集团问题的电路设计及其在量子计算机上的实现
Circuit Design for Clique Problem and Its Implementation on Quantum Computer
论文作者
论文摘要
在图中查找集团的模式匹配能力具有多个应用程序。 $ k $ -clique问题是一个集体问题的特殊情况,确定了任意图是否包含大小$ k $的集团,已经在量子域中解决了。 $ k $ clique问题的变体列出了所有尺寸$ k $的集团,也具有流行的现代应用程序。尽管如此,在量子设置中的$ k $ clique问题的这种变体仍然没有受到影响。在本文中,除了对这种$ k $确定问题的理论解决方案外,使用Grover的算法解决了实用的基于量子门的实现。这种方法进一步扩展到设计电路,以解决经典量子式混合体系结构中的最大集合问题。该算法会自动为任何给定的未定向且未加权的图和任何给定的$ K $生成电路,这使我们的方法在本质上进行了概括。与最先进的方法相比,解决$ k $ clique问题的拟议方法已经显示出量子成本和电路深度的降低。还提出了一个可以将自动生成的电路映射到量子设备的框架。使用IBM的Qiskit证明了对实验结果的分析。
Finding cliques in a graph has several applications for its pattern matching ability. $k$-clique problem, a special case of clique problem, determines whether an arbitrary graph contains a clique of size $k$, has already been addressed in quantum domain. A variant of $k$-clique problem that lists all cliques of size $k$, has also popular modern-day applications. Albeit, the implementation of such variant of $k$-clique problem in quantum setting still remains untouched. In this paper, apart from theoretical solution of such $k$-clique problem, practical quantum gate-based implementation has been addressed using Grover's algorithm. This approach is further extended to design circuit for the maximum clique problem in classical-quantum hybrid architecture. The algorithm automatically generates the circuit for any given undirected and unweighted graph and any given $k$, which makes our approach generalized in nature. The proposed approach of solving $k$-clique problem has exhibited a reduction of qubit cost and circuit depth as compared to the state-of-the-art approach, for a small $k$ with respect to a large graph. A framework that can map the automated generated circuit for clique problem to quantum devices is also proposed. An analysis of the experimental results is demonstrated using IBM's Qiskit.