论文标题
环形等离子体的毕业生级方程的扩散时间演变
Diffusive time evolution of the Grad-Shafranov Equation for a Toroidal Plasma
论文作者
论文摘要
我们描述了在存在恒定电阻率的情况下具有环形拓扑的血浆平衡的演变。在概述了解决方案的主要分析特性之后,我们通过重现即将到来的意大利实验转移Tokamak测试设施的场景的基本特征来说明其物理含义,并具有良好的准确性。尽管我们发现电阻扩散时间尺度为$ 10^4 \,$ s,但我们观察到$ 10^2 \,$ s的等离子体体积的宏观变化,可与设计按设计按设计相媲美。在工作的最后一部分中,我们将我们的自洽解决方案与更常见的solov'ev和一个非线性配置家庭进行了比较。
We describe the evolution of a plasma equilibrium having a toroidal topology in the presence of constant electric resistivity. After outlining the main analytical properties of the solution, we illustrate its physical implications by reproducing the essential features of a scenario for the upcoming Italian experiment Divertor Tokamak Test Facility, with a good degree of accuracy. Although we find the resistive diffusion timescale to be of the order of $10^4\,$s, we observe a macroscopic change in the plasma volume on a timescale of $10^2\,$s, comparable to the foreseen duration of the plasma discharge by design. In the final part of the work, we compare our self-consistent solution to the more common Solov'ev one, and to a family of nonlinear configurations.