论文标题
$ k $ - 理论$ i $ $ $ - 格拉曼双重功能的级别对应关系
Level correspondence of $K$-theoretic $I$-function in Grassmann duality
论文作者
论文摘要
在本文中,我们证明了一类非平凡的Q-Pochhammer符号身份,并通过迭代残基方法具有额外的参数。然后,我们使用这些身份来找到与格拉斯曼尼亚人与其双重格拉斯曼尼亚人之间的水平结构的准映射$ k $ i $ functions的关系。在这里,我们找到一个级别的间隔,其中两个$ i $ functions是相同的,在该间隔的边界上,两个$ i $ functions彼此相互交织。我们称这种现象级别的对应关系是格拉斯曼双重性。
In this paper, we prove a class of nontrivial q-Pochhammer symbol identities with extra parameters by iterated residue method. Then we use these identities to find relations of the quasi-map $K$-theoretical $I$-functions with level structure between Grassmannian and its dual Grassmannian. Here we find an interval of levels within which two $I$-functions are the same, and on the boundary of that interval, two $I$-functions are intertwining with each other. We call this phenomenon level correspondence in Grassmann duality.