论文标题

与Brinkman类型阻尼项的声学系统的对数稳定

Logarithmic stabilization of an acoustic system with a damping term of Brinkman type

论文作者

Ammari, Kaïs, Hassine, Fathi, Robbiano, Luc

论文摘要

我们研究具有空间分布阻尼的声学系统的稳定问题。在不对阻尼项的结构特性施加任何假设的情况下,我们确定了溶液的对数衰减,随着时间的增长。对数衰减率是通过使用频域方法显示的,并将矛盾的参数与乘数技术和新的Carleman估计结合在一起,以进行分解的特殊分析。

We study the problem of stabilization for the acoustic system with a spatially distributed damping. Without imposing any hypotheses on the structural properties of the damping term, we identify logarithmic decay of solutions with growing time. Logarithmic decay rate is shown by using a frequency domain method and combines a contradiction argument with the multiplier technique and a new Carleman estimate to carry out a special analysis for the resolvent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源