论文标题
特征值的连续性和针对拉普拉斯和斯特克洛夫问题的形状优化
Continuity of eigenvalues and shape optimisation for Laplace and Steklov problems
论文作者
论文摘要
我们将一系列变异特征值与紧凑的riemannian歧管上的任何ra量相关联。对于特定的措施选择,我们恢复了拉普拉斯,斯特克洛夫和其他经典特征值问题。在本文的第一部分中,我们研究了特性特征值并建立了一般的连续性结果,该结果显示了相关的sobolev空间双重收敛的一系列度量,同时相关的特征值也融合了。本文的第二部分专门用于各种应用以塑造优化。主要主题是研究斯特克洛夫特征值的尖锐等级不平等现象,而没有对边界连接组件的数量进行任何假设。特别是,我们为平面域的每个steklov特征值解决了等等问题:$ k $ th的最佳上限 - the-th范围差异型steklov eigenvalue $8πk$,是$ k $ $ k $的最佳上限 - 三个区域归一量的lapleakian of lapheers of lapheerhe of lapheerhe of lapheerhe of lapheerhe。证明涉及实现加权的诺伊曼问题,这是穿孔域上的史凯洛夫问题的限制。对于$ k = 1 $,最大化序列的连接边界组件的数量必须趋于无穷大,并且我们在连接组件的数量上提供了定量的下限。我们分析的一个令人惊讶的结果是,任何最大化具有固定周边的平面域序列都必须崩溃到一个点。
We associate a sequence of variational eigenvalues to any Radon measure on a compact Riemannian manifold. For particular choices of measures, we recover the Laplace, Steklov and other classical eigenvalue problems. In the first part of the paper we study the properties variational eigenvalues and establish a general continuity result, which shows for a sequence of measures converging in the dual of an appropriate Sobolev space, that the associated eigenvalues converge as well. The second part of the paper is devoted to various applications to shape optimization. The main theme is studying sharp isoperimetric inequalities for Steklov eigenvalues without any assumption on the number of connected components of the boundary. In particular, we solve the isoperimetric problem for each Steklov eigenvalue of planar domains: the best upper bound for the $k$-th perimeter-normalised Steklov eigenvalue is $8πk$, which is the best upper bound for the $k$-th area-normalised eigenvalue of the Laplacian on the sphere. The proof involves realising a weighted Neumann problem as a limit of Steklov problems on perforated domains. For $k = 1$, the number of connected boundary components of a maximizing sequence must tend to infinity, and we provide a quantitative lower bound on the number of connected components. A surprising consequence of our analysis is that any maximizing sequence of planar domains with fixed perimeter must collapse to a point.