论文标题
限制性玻尔兹曼机器和POTTS模型的身份测试硬度
Hardness of Identity Testing for Restricted Boltzmann Machines and Potts models
论文作者
论文摘要
我们研究受限制的玻尔兹曼机器(RBM)的身份测试,更普遍地研究了无方向的图形模型。给定对吉布斯分布的示例访问,与未知或隐藏的模型$ m^*$相对应,并给定明确的模型$ m $,我们可以区分$ m = m = m^*$,还是(统计上)分开吗? Daskalakis等。 (2018)提出了一种用于铁磁(有吸引力)ISING模型的身份测试的多项式时间算法。相比之下,对于抗铁磁(排斥)ISING模型,Bezáková等人。 (2019年)证明,除非$ rp = np $,否则当$βd=ω(\ log {n})$时,没有身份测试算法,其中$ d $是可见图的最大程度,$β$是绝对值的最大边缘权重。 即使没有潜在变量或外部磁场,我们也证明了RBMS(即两部分图上的混合ISING模型)的硬度结果。具体来说,我们表明,如果$ rp \ neq np $,那么当$βd=ω(\ log {n})$时,RBMS的身份测试没有多项式时间算法;当$βd= o(\ log {n})$有一个有效的身份测试算法,它利用了Klivans和Meka(2017)的结构学习算法。此外,我们证明了与不一致的外部磁场和铁磁POTTS模型的纯铁磁RBM相似的下限。 Bezáková等人身份测试的先前硬度结果。 (2019年)利用了找到最大切割的硬度,这对应于抗磁性ISING模型的基态。由于rbms在两分图上,因此这种方法是不可行的。相反,我们引入了一种一般方法,以减少相应的近似计数问题,并利用RBMS和平均场Potts模型所展示的相变。
We study identity testing for restricted Boltzmann machines (RBMs), and more generally for undirected graphical models. Given sample access to the Gibbs distribution corresponding to an unknown or hidden model $M^*$ and given an explicit model $M$, can we distinguish if either $M = M^*$ or if they are (statistically) far apart? Daskalakis et al. (2018) presented a polynomial-time algorithm for identity testing for the ferromagnetic (attractive) Ising model. In contrast, for the antiferromagnetic (repulsive) Ising model, Bezáková et al. (2019) proved that unless $RP=NP$ there is no identity testing algorithm when $βd=ω(\log{n})$, where $d$ is the maximum degree of the visible graph and $β$ is the largest edge weight in absolute value. We prove analogous hardness results for RBMs (i.e., mixed Ising models on bipartite graphs), even when there are no latent variables or an external field. Specifically, we show that if $RP \neq NP$, then when $βd=ω(\log{n})$ there is no polynomial-time algorithm for identity testing for RBMs; when $βd =O(\log{n})$ there is an efficient identity testing algorithm that utilizes the structure learning algorithm of Klivans and Meka (2017). In addition, we prove similar lower bounds for purely ferromagnetic RBMs with inconsistent external fields, and for the ferromagnetic Potts model. Previous hardness results for identity testing of Bezáková et al. (2019) utilized the hardness of finding the maximum cuts, which corresponds to the ground states of the antiferromagnetic Ising model. Since RBMs are on bipartite graphs such an approach is not feasible. We instead introduce a general methodology to reduce from the corresponding approximate counting problem and utilize the phase transition that is exhibited by RBMs and the mean-field Potts model.