论文标题
不可渗透的歧管的末端:广义的风笛定理
Ends of non-metrizable manifolds: a generalized bagpipe theorem
论文作者
论文摘要
我们启动了不可渗透流形的末端的研究,并介绍了短末端和远端的概念。使用开发的理论,我们提供了(不可渗透)表面的表征,可以将其写入可迁移的歧管的拓扑总和,并在其目的的空间上加上可数量的“长管”。这是对Nyikos的风笛定理的直接概括。
We initiate the study of ends of non-metrizable manifolds and introduce the notion of short and long ends. Using the theory developed, we provide a characterization of (non-metrizable) surfaces that can be written as the topological sum of a metrizable manifold plus a countable number of "long pipes" in terms of their spaces of ends; this is a direct generalization of Nyikos's bagpipe theorem.